Abstract

An inferential semantics for full Higher Order Logic (HOL) is proposed. The paper presents a constructive notion of model, that being able to capture relevant computational aspects is particularly suited for the applications of HOL to computer science. The inferential semantics is based on the introduction of new abstract deduction structures (ADS) that express the action of the Comprehension Axiom in a higher order logic proof. The ADSs allow to define an inferential algebra of higher order proof-trees, endowed with two binary operations, the abstraction and the contraction, each consisting of constructive reductions between proofs. Typed formulas are interpreted by trees, and the reductions between proofs correspond to the logical connectives of the interpreted formula. Higher order logic is sound and complete w.r.t. the given inferential semantics.

Keywords: Logic in Computer Science, constructive semantics for higher order logic, proof-theory

1. Introduction

In this work an inferential semantics for classical Higher Order Logic is proposed which provides a new kind of syntactic models. The formulation of Higher Order Logic considered in this paper is the sequent version of Church’s theory of types defined by Miller, Scedrov, Nadathur and Pfenning in the early 1990’s (see, e.g., [23]), so that also typed λ-calculus is included in the system.

The main goal of the paper is to introduce a new notion of interpretation that could more easily convey a semantic characterization related to the notion of proof: inferential semantics introduces a class of models of Higher Order Logic with such a constructive nature, which is strong enough to allow a completeness result.

The well known papers of Henkin [17] and Andrews [1], [2] provided a semantics for Church’s classical type theory by means of general models, where the information about the semantical features of the interpreted formula remains mostly implicit. Conversely, inferential semantics aims at interpreting a typed formula \(B_\alpha \) through an effectively constructed object, including explicit information, that translates the syntax of \(B_\alpha \), both the logical part and the typed part, into some precise inferential properties of a sequent tree.

To this aim, a new proof-theoretic analysis of full Higher Order Logic is proposed, based on a formal characterization of the role of the Comprehension-rules (\(\exists \)-R, \(\forall \)-L, i.e. the two rules expressing the Comprehension Axiom) in a sequent tree. Such analysis allows to define an abstraction of the proof-trees resulting in sequences of formulas (called abstract deduction structures) which are linked to specific occurrences of Comprehension-rules in the tree. Thus, essentially, inferential semantics associates to a formula \(B_\alpha \) a set of abstract deduction structures occurring in a sequent tree.

As a consequence of the effective character of the inferential interpretation, a new notion of meaning for typed formulas of arbitrary type can be introduced. It is independent of the truth denotation: thus, inferential semantics can formally separate truth denotation and meaning. Moreover, this allows the definition of new complexity measures on formulas and proofs, that include both the syntactic and the semantic aspects.

It is worth noting that the role of Higher Order Logic in many application fields, most notably computer science, is important and significant: type systems for programming languages and models for the typed λ-calculus are relevant examples, e.g., typed λ-calculus [19] is a part of Church’s formulation of Higher Order Logic [8]. Logic programming has also been deeply influenced by Higher Order Logic: the studies of Andrews [1] on higher order theorem provers are at the basis of the works of Miller on λ-Prolog [22]. Thus, the inferential semantics proposed

*Corresponding author

Email addresses: gentilini@ge.imati.cnr.it (Paolo Gentilini), martelli@disi.unige.it (Maurizio Martelli)
in this paper could be seen as a contribution to the construction of richer semantical tools that can help reasoning about some computational aspects of various formulations of HOL.

Further relevant developments can be envisaged when we restrict Higher Order Logic to some fragments of a logic programming nature, e.g. the higher order logic programming languages defined in [23], where the fundamental notion of uniform proof is introduced. Bai and Blair [4] and Wolfram [30] gave semantics for the classical higher order Horn clause fragment of \(\lambda \)-prolog. De Marco and Lipton [9] produced a model theory of resolution on Higher Order Hereditary Harrop formulas (HOHH) with uniform proofs, through a constructive algebraic approach. The inferential semantics can be used to obtain, in the Higher Order Logic setting, something similar to the s-semantics approach studied by Levi’s research group; it was used to have a notion of model meaningful from the computational point of view (see for example [6]). A preliminary study of extending the s-semantics approach to Higher Order Logic was presented in [21].

Moreover, Higher Order Logic is still a relevant topic also in fundamental research in logic: see for example the work of De Marco and Lipton on completeness and cut-elimination in the intuitionistic theory of types [10]. In such a perspective, one should note that the definition of the main tools of inferential semantics does not depend on the logic being classical: thus, they should extend reasonably to non-classical logics, and a completeness result for intuitionistic Higher Order Logic w.r.t. inferential models is work progress.

1.1. Outline of the paper

In Section 2 the syntax and the sequent version \(\mathbf{LK}_\omega \) of higher order logic that have been chosen are presented. In Section 3 the notion of Comprehension Abstract Deduction Structure (Comp-ADS) is introduced; this allows to define in Sec. 3.3 the general notion of inferential algebra on a fixed kind \(K \) of Comp-ADS’s. In Section 4 the inferential interpretation of a typed formula in the domains of an inferential algebra is defined. An example of inferential interpretation is given in Appendix A1. In Section 5 the inferential frames and the inferential structures are introduced: they allow to define a notion of semantical identification between formulas and, provided that the frame is a sound functional denotation (Def. 5.3), the notion of truth of a sentence. In Section 6 a particular kind of Comp-ADS is introduced, the critical chain ADS. Section 7 and 8 are devoted to the main theorem of the paper, which proves that the inferential algebras based on the critical chain ADS’s give a semantics for \(\mathbf{LK}_\omega \). In Section 9 soundness and completeness of \(\mathbf{LK}_\omega \) w.r.t. inferential semantics are proven. In Section 10 a new notion of meaning for formulas of arbitrary type is proposed: it is independent of the truth denotation, and has an effective and declarative character that allows to introduce semantical complexity measures on formulas and proofs. In section 11 the work in progress and some forthcoming results are sketched.\(^1\)

2. \(\mathbf{LK}_\omega \): a sequent presentation of simple Type Theory

The sequent system \(\mathbf{LK}_\omega \) presented here will be used as a formal setting for expressing full higher order logic. Therefore, \(\mathbf{LK}_\omega \) will be presented in a style a la Church, not as a type assignment theory (as in [18]), and the basic syntax of the functional type theory, as defined in [8], will be used. \(\mathbf{LK}_\omega \) will be expressed through classical Gentzen sequent calculus [14] and the chosen Gentzen - style representation will refer to thesequent rules for abstract logic programming languages given in Miller et al. [23] p.130.

For the general notion of higher order proof-theory, we refer to Takeuti(Ch.3 of [27]) and Girardi(Ch.’s 3A, 3B of [16]). The choice of the functional version is based on these considerations: i) the efficiency of the \(\lambda \)-formalism in handling typed expressions; ii) the existence of higher order logic programming languages based on functional type theory [23], that can be considered as a possible application field for the semantics presented here; iii) the possibility of some interaction of the presented syntactic-semantic construction within the specific typed lambda calculus setting [19].

2.1. Language of \(\mathbf{LK}_\omega \): the structure of types

First, some useful and well established notions on the structure of the types are recalled.

Definition 2.1. Types are:

i) primitive types: \(o \), the propositional type and \(i \), the type for individuals; they will also be called atomic types;

ii) compound types: compound types are inductively constructed from primitive types and have the form \(\alpha \rightarrow \beta \); according to the use, the type constructor \(\rightarrow \) associates to the right.

\(^1\)Given that, in some sections, completely new notions are introduced, we will put some notes along the text to help the reader in choosing some examples that can be helpful in understanding the definitions.
Then, also referring to [18] p.115 and p.153, every type \(\tau \) can be uniquely expressed in the form: \(\tau_1 \rightarrow \tau_2 \rightarrow \ldots \tau_m \rightarrow a \) where, given the right association convention, the redundant parentheses have been omitted. This form nicely represents a condensed structure (or tree) of the type and can be called a condensed writing of \(\tau \). a is necessarily a primitive type occurrence called the tail of \(\tau \), and the \(\tau_j \)'s are the premises of \(\tau \).

The number \(m \) is the arity of \(\tau \). The complexity parameters are the following:

Definition 2.2. i) The order \(\text{ord}(\tau) \) of a type \(\tau \) is defined on the condensed writing of \(\tau \) as follows: \(\text{ord}(a) = 0; \) \(\text{ord}(\alpha \rightarrow \beta) = 1 \); \(\text{ord}(\alpha) = 1 \); let \(\tau \) be \(\tau_1 \rightarrow \tau_2 \rightarrow \ldots \tau_m \rightarrow a \), \(a \) atomic type; then \(\text{ord}(\tau) = \max\{\text{ord}(\tau_1), \ldots, \text{ord}(\tau_m)\} + 1 \).

ii) The depth \(d(\tau) \) of a type \(\tau \) is defined on the condensed writing of \(\tau \) as follows: let a \(\tau \)-premise sequence be a sequence of strict inclusions between premises and subpremises of \(\tau \), starting from \(\tau \). Then \(d(\tau) \) is the length of the longest \(\tau \)-premise sequence.

iii) The height \(h(\tau) \) of a type \(\tau \) is defined as follows: \(h(i) = 0 \); \(h(a) = 1 \); \(h(\alpha \rightarrow \beta) = \max\{h(\alpha), h(\beta)\} + 1 \).

The distinction between depth and order is necessary, since individuals and propositions have different orders. Moreover, it is straightforward to prove that \(\text{ord}(\tau) \in \{d(\tau), d(\tau) - 1\} \). Note that for each \(\tau \) with at least one occurrence of \(o \) in it, \(h(\tau) \geq d(\tau) \). In the literature both the height and the depth are used in order to measure the complexity of a type, and they express different aspects of such complexity.

2.2. Language of \(\text{LK}_\alpha \); terms and formulas

Definition 2.3. The typed \(\lambda \)-terms of \(\text{LK}_\alpha \) are defined as follows (the type of the term is always indicated by a greek subscript, the index by a latin superscript):

i) for each type \(\alpha \) a denumerable set of free variables of type \(\alpha \), indexed by \(j \in \mathbb{N} : b^\alpha_1, \ldots \); for each type \(\alpha \) a denumerable set of bound variables of type \(\alpha \), indexed by \(j \in \mathbb{N} : y^\alpha_1, \ldots \); for each type \(\alpha \) a denumerable set of non logical constants of type \(\alpha \), indexed on \(j \in \mathbb{N} : a^\alpha_1, \ldots \); variables and constants are called atoms. \(b^\alpha_1 \) is called free variable corresponding to the bound variable \(y^\alpha_1 \) if they have the same index.

ii) compound terms are built from atoms using applications and \(\lambda \)-abstractions:

if \(d^\beta = 0 \) and \(m^\alpha \) are terms then \(d^\alpha, g^\beta m^\alpha \) is, by application, a term of type \(\beta \); applications associate to the left.

If \(x^\alpha \) is a bound variable of the language and \(d^\beta \) an arbitrary term, then \(\lambda x^\alpha[b^\beta/x^\alpha] \) is a term of type \(\alpha \rightarrow \beta \), called the \(\lambda \)-abstraction of \(d^\beta \) at \(x^\alpha \); \([x^\alpha/b^\beta/x^\alpha] \) indicates the result of the substitution (Definition 2.4 below) of the possible occurrences in \(d^\beta \) of the free variable \(b^\beta \) corresponding to \(x^\alpha \). In general it will be briefly written \(\lambda x^\alpha[b^\beta] \) for \(\lambda x^\alpha[b^\beta/x^\alpha] \). A sub-term of a term \(q^\alpha \) is each term occurring in it. A formula is closed if no free variables occur in it. Closed formulas of type \(o \) are also called sentences.

Latin capital letters will be used as a meta-notation for arbitrary typed terms: \(A^\alpha, B^\beta \). Moreover, let \(F[\alpha \ldots \alpha] \) denote an arbitrary formula having \(\alpha \) as sub-formula. For the details of the definition of terms and the well-known intended meaning of \(\lambda \)-expressions, see: [8], [19] Ch1., [3] pp 161-166 and [18] p.140. Following Church [8] the definition above is used to define both well formed terms and formulas, independently of their type. Informally, an expression \(C^\gamma \) will be called a term if considered as a possible sub-term of a more complex expression, instead it will be called a formula if considered independently of any context. At the syntactic level no particular status is given to the o-typed terms \(A_o \). As specified below, the notion of sequent is necessary to select a specific syntactic property of the formulas of type \(o \), as the only formulas that may be isolated formulas in a sequent.

Definition 2.4. (substitution) The expression \([C^\gamma/M^\alpha]\beta \) denotes the result of the uniform replacement of each occurrence of the term \(M^\alpha \) in \(B^\beta \) with \(C^\gamma \). A term of the form \((\lambda x^\alpha A^\gamma) \) is called a \(\beta \)-redex and its contractum is the corresponding term \(M^\alpha \) with \(\beta \) replaced by its contractum. A term is in \(\lambda \)-normal form if

2By iterating the definition starting from each premise occurrence \(\tau_j \), we obtain straightforwardly a family of subpremise and subtail occurrences of \(\tau \). The occurrences of premises, tail, subpremises, subtails form the set of the significant components of \(\tau \). For example, let \(\tau \) be \((i \rightarrow o \rightarrow o) \rightarrow (o \rightarrow i) \rightarrow i \rightarrow o \). If we use capital letters as meta-notation to indicate indexed type occurrences \(\tau \) can be expressed as: \((t_1 \rightarrow O_2 \rightarrow O_3) \rightarrow (O_2 \rightarrow I) \rightarrow I \rightarrow O_7 \). The set of premise and subpremise occurrences is \{\(\tau_i \rightarrow O_2 \rightarrow O_3 \rightarrow O_2 \rightarrow I \rightarrow I \rightarrow O_7 \)\} and the set of tail and subtail occurrences is \{\(O_2 \rightarrow I \rightarrow O_7 \)\}. Concisely, premises of \(\tau \) are both the premise and the subpremise occurrences. The main sequence in \(\tau \) is the longest \(\tau \)-premise sequence obtained by selecting at each step the leftmost subpremise, and the main premise of \(\tau \) is the second element of the main sequence in \(\tau \).

3If compound types are interpreted as varying in sets constructed by power set operation and cartesian product operation starting from the domain of individuals, the depth of \(\tau \) is the longest number of nested power set operations in the nested brackets.
Moreover, in Note that atom and atomic formula are different concepts. Atomic formulas are formulas of type \(o \), i.e. for each type \(o \), \(\alpha \) language, i.e. for each type \(o \), Definition 2.6. 3 proof-tree. Technical role in the definition of models; and, following [27], in a sets of formulas of type \(A \). A sequent, is called a \(\Delta \) sequent. In a sequent. 2.4. A Sequent Calculus for LK \(_o \). For a general discussion of sequent calculus see [16, 27, 28]. The sequent axioms and rules of \(\mathbf{LK}_o \) are the following: (In a sequent \(\omega \), \(\Delta \), \(\Gamma \), \(\Pi \), \(\Theta \), ... will be used as metaexpressions for finite sets of \(o \)-typed formulas and \(A, B, C, D, \ldots \) for isolated formulas. The writing \(\Omega, \Delta \) denotes \(\Omega \cup \Delta \).) 0) Logical axioms: 0i) \(A \vdash A \) where \(A \) is an atomic formula; 0ii) \(\bot \vdash \bot \); 1) Logical rules:
1i) Propositional logical rules:

\[
\begin{align*}
A, \Gamma & \vdash \Delta
\quad \\
\Gamma & \vdash \Delta, \neg A \rightarrow \neg R
\end{align*}
\]

\[
\begin{align*}
A, \Gamma & \vdash \Delta
\quad \\
\Gamma & \vdash \Delta, A \land B \rightarrow \land -L
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta, A \land B
\quad \\
\Gamma & \vdash \Delta, B
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta, A \lor B \rightarrow \lor -R
\end{align*}
\]

\[
\begin{align*}
\Theta, \Gamma & \vdash \Omega, A \land B \rightarrow \land -R
\end{align*}
\]

\[
\begin{align*}
A, \Gamma & \vdash \Delta, B
\quad \\
\Gamma & \vdash \Delta, A \supset B \rightarrow \supset -R
\end{align*}
\]

1ii) Logical rules for quantifiers:

\[
\begin{align*}
\forall x \alpha A, \Gamma & \vdash \Delta \rightarrow \forall -L
\end{align*}
\]

\[
\begin{align*}
\exists x \alpha A, \Gamma & \vdash \Delta \rightarrow \exists -L
\end{align*}
\]

\[
\begin{align*}
\exists x \alpha A, \Gamma & \vdash \Delta
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta, \exists x \alpha A
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta, [\lambda \alpha A] \rightarrow \forall -R
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta, [\text{free variable } b \alpha] \rightarrow \exists -R
\end{align*}
\]

where: in \(\forall -L\), \(\exists -R\), \(t \alpha\) is an arbitrary term and in the corresponding \(\forall x \alpha A\) and \(\exists x \alpha A\), \(t \alpha\) may still occur, that is \(t \alpha\) may be not fully quantified in \(\forall x \alpha A\) and \(\exists x \alpha A\); on the other hand, in \(\forall -R\) and \(\exists -L\), the free variable \(b \alpha\) occurring in \([b \alpha/x \alpha] A\) is uniformly replaced in \(\forall x \alpha A\) and \(\exists x \alpha A\) with the bound variable \(x \alpha\) having the same index, and \(b \alpha\) does not occur in \(\Gamma, \Delta\). \(b \alpha\) is the proper variable or eigenvariable of the rule.

1ii) \(\lambda\)-rule:

\[
\begin{align*}
\Gamma & \vdash \Delta' \\
\Gamma & \vdash \Delta
\end{align*}
\]

where the sets \(\Gamma\) and \(\Delta\) and the sets \(\Delta\) and \(\Delta'\) differ only in that zero or more formulas in them are replaced by some formulas to which they are \(\beta\)-reducible. Note that the rule is defined so that the \(\beta\)-reduction may work either upwards or downwards. A term occurrence in the \(\lambda\)-premise, reduced to a \(\beta\)-contractum or replaced with a \(\beta\)-redex by the \(\lambda\)-rule, is called maximal if it does not occur as subterm in any different term reduced or replaced by the rule.

2) Structural rules:

2i) Weakening rules:

\[
\begin{align*}
\Gamma & \vdash \Delta
\quad \\
\Gamma & \vdash \Delta, A \rightarrow \text{W-R}
\end{align*}
\]

\[
\begin{align*}
\Gamma & \vdash \Delta
\quad \\
\Gamma & \vdash \Delta, A \rightarrow \text{W-L}
\end{align*}
\]

2ii) Cut rule:

\[
\begin{align*}
\Gamma & \vdash \Delta, A
\quad \\
\Theta, \Gamma & \vdash \Omega
\end{align*}
\]

\[
\begin{align*}
\Theta, \Gamma & \vdash \Delta, \Omega
\end{align*}
\]

\[
\begin{align*}
\Theta, \Gamma & \vdash \Delta, \Omega \rightarrow \text{Cut}
\end{align*}
\]

3) Typed equality axioms:

3i) \(t \alpha = a \rightarrow t \alpha\)

3ii) \(\vdash (A_o = a B_o) \iff (A_o \leftrightarrow B_o)\)

3iii) \(t \alpha = f a, q a = a f a, f a = a r a \rightarrow t \alpha = a q a\)

3iv) \(t \alpha = a f a \vdash A_{a a} = a A_{a a f a}\)

3v) Extensionality axioms:

\[
\begin{align*}
\forall \beta [F_{\beta a} = a G_{\beta a}] \vdash \beta = a F_{\beta a}
\end{align*}
\]

where \(F_{\beta a}, G_{\beta a}\) are arbitrary \(\beta \rightarrow \alpha\)-typed formulas.

4) Trees: a proof-tree \(P\) in \(\text{LK}_{\alpha}\), \(\beta\) is a finite tree of sequents connected by \(\text{LK}_{\alpha}\)-rules having \(\text{LK}_{\alpha}\)-axioms as leaves. In each rule occurrence \(R\) the upper sequents are called the premises of \(R\), the lower sequent is called the conclusion of \(R\). The lowestmost sequent \(\delta\) in \(P\) is called the root or end-sequent of \(P\), and \(P\) is an \(\text{LK}_{\alpha}\)-proof of \(S\). A semiproof-tree \(Q\) in \(\text{LK}_{\alpha}\), is a tree of sequents connected by \(\text{LK}_{\alpha}\)-rules, that has arbitrary sequents as leaves. A branch in a tree \(P\) is a sequence of sequents, mutually connected by a premise-conclusion relation, starting from a \(P\)-leaf and ending at the \(P\)-root; a semibranch is a sub-sequence of sequents mutually connected by a premise-conclusion relation in a branch. The height of a tree is the greatest number of proof lines in a branch.
Definition 2.9. (Propositions of a rule occurrence) Let \mathcal{R} be a rule occurrence in a LK_{ω_1}-tree P, having one of the forms presented above. Then:

i) If \mathcal{R} is a propositional rule or a logical rule for quantifiers, we call an auxiliary proposition of \mathcal{R} each isolated formula occurrence (Def. 2.8) in a premise of \mathcal{R} to which \mathcal{R} applies the introduced logical symbol, and a principal proposition of \mathcal{R} the resulting isolated formula occurrence in the conclusion of \mathcal{R}.

ii) If \mathcal{R} is an ω-rule, we call an auxiliary proposition of \mathcal{R} each isolated formula occurrence in the premise of \mathcal{R} which includes a sub-formula which is either β-reduced by \mathcal{R} or replaced with any of its β-redexes by \mathcal{R}; we call a principal proposition of \mathcal{R} the corresponding isolated formula occurrence in the conclusion of \mathcal{R}. ◊

Example 2.10. In the following \supset-L rule:

$$
\Gamma \vdash \Delta, A \\
A \supset B, \Theta, \Gamma \vdash \Delta, \Omega
$$

In the conclusion is the principal proposition.

In the following \lor-R rule:

$$
\Gamma \vdash \Delta, D \\
\Gamma \vdash \Delta, D \lor B
$$

D in the premise is the auxiliary proposition, and $D \lor B$ in the conclusion is the principal proposition; B in the proposition $D \lor B$ is not a distinguished proposition, it is the maximal non isolated introduced term of the rule, as it will be defined in Section 6. ◊

As usual we assume that all the introduced eigenvariables in a proof P are distinct from one another, and never occur in different roles. Moreover, if the free variable b_α occurs in the LK_{ω_1}-proof P and is not an eigenvariable, then the uniform replacement of b_α with an arbitrary term t_α produces a tree P' which is an LK_{ω_1}-proof.

The presented system can be considered as a proper extension of the system of Miller et al. [23]: this allows to connect the proof-theoretical analysis and the semantical constructs presented in the paper to the theory of higher order abstract logic programming languages presented in [23]. In contrast with [23], the rules for weakening and negation appear in the system, and in the axioms $A \supset A, \top \vdash T, \bot \vdash$ the antecedents and the succedents are at most singletons; moreover, in the axioms $A \vdash A$, the formula A must be atomic. The reasons are the following: for a general study of inference in Type Theory it doesn’t seem suitable to have only proof trees in which all the information introduced as input in a branch occurs at each level of the branch; conversely, it is desirable to make available proofs in which, at each level, only the information strictly necessary for the inferential step has been introduced as input. That is, even without reaching the formal control of proof resources achieved in Linear Logic [15], it helps to establish a hierarchy in the quality of inference, so that: proofs in which the information input is mainly given by axioms have a higher inference quality than those in which the information input is mainly given by weakenings. Furthermore, accepting atomic logical axioms only, makes the information input the minimal to produce the root. These qualitative features will be formalized in the definition of strong and weak propositional inference, presented in Section 6, and will be connected to the assignment of an inferential type to proofs in LK_{ω_1}. As it is well known [27, 25], the equality free part of LK_{ω_1} admits cut-elimination.

2.5. Gödel numbering

A suitable Gödel-numbering for the expressions of the language is fixed, so that to each expression E is injectively assigned a Gödel-number $\#E$. For the general properties of gödelization see, e.g., [26]. Gödelization of syntax is here employed as a standard tool of proof-theory, and has a useful auxiliary role, not a central role. In particular, note that given the expression E, $\#E$ is recursively computable, and a recursive procedure exists which decides if any natural number n is the code $\#F$ of an expression F of the language. Moreover, formulas, sequents, trees, are all included in the gödelization domain.

3. Abstract deduction structures (ADS) in LK_{ω_1}-trees and Inferential Algebras

3.1. The centrality of the Comprehension Axiom and Comp-rules

The fundamental goal of inferential semantics will be to model a higher order sentence through suitable instances of the Comprehension Axiom. The Comprehension Axiom is a canonical topic, but a completely new use of it is proposed in this paper. Indeed, the Comprehension Axiom has a very important role: for example the step from the logic of order m to the logic of order $m+1$ can be seen as one that adds the possibility of quantification over the
domain constituted by the relations defined by the formulas $\phi^{(m)}$ of m-order logic, in which variables of order at most m occur. A functional writing of the Comprehension Axiom schema is the following ([3]):

$$\forall x_{11}^{\alpha} \cdots \forall x_{m}^{\alpha} \exists f_{\alpha} \cdots \forall x_{\alpha} \neg \forall x_{\alpha}^{\mu}(f_{\alpha} \cdots \forall x_{\alpha} \neg \exists x_{\alpha}^{\beta} \equiv B_{\beta})$$

where B_{β} is an arbitrary β-typed formula, called the auxiliary formula of the axiom, having variables included in the set $\{x_{11}^{\alpha}, \ldots, x_{m}^{\alpha}, Z_{\alpha}^{1} \cdots, Z_{\alpha}^{n}\}$; recall that \equiv has the same meaning as the logical equivalence; $f_{\alpha} \cdots \forall x_{\alpha} \equiv B_{\beta}$ is the principal variable of the axiom and it cannot coincide with any variable in B_{β}.

It is well known that, see e.g. [27] Ch3: in a sequent version of type theory, Comprehension Axioms are fully expressed by \exists-R, \forall-L rules, where for any type α arbitrary formulas t_{α} can be quantified. For example:

$$\frac{\vdash c_{\alpha}/x_{\alpha}^{\alpha}(B_{\beta} \equiv B_{\beta})}{\vdash \forall x_{\alpha}(B_{\beta} \equiv B_{\beta})} \forall$-R

$$\frac{\vdash \forall x_{\alpha}^{\alpha}(B_{\beta} \equiv B_{\beta})}{\vdash \exists f_{\alpha} \cdots \forall x_{\alpha}(f_{\alpha} \cdots \forall x_{\alpha} \equiv B_{\beta})} \exists$-R

where c_{α} is a free variable and B_{β} an arbitrary formula. The crucial point is the \exists-R quantification on the formula $\lambda y_{\alpha}[y_{\alpha}/x_{\alpha}^{\alpha}]B_{\beta}$.

Therefore, the \exists-R, \forall-L rules acting on arbitrary formulas of arbitrary types will be called Comprehension rules (briefly Comp-rules), and the relevant part of higher order inference is concentrated in them. The Comprehension Axiom and its restrictions determine the proof-theoretic strength of higher order systems. It must be noted that the difficulty in giving a syntactic proof of cut elimination for \mathbf{LK}_{ω} is due to the occurrence of Comp-rules in the proofs. Moreover, due to Comp-rules, the cut-free part of \mathbf{LK}_{ω} does not admit the sub-formula property for any type. For these canonical topics we refer to [27].

3.2. Abstract Deduction Structures

To enhance the role of Comp-rules in a \mathbf{LK}_{ω}-tree it is possible to define inference paths that abstract from the standard premise-conclusion inference relation between sequents. These new paths can concentrate on the higher order nature of Comp-rule, hiding more specific details of the proofs. In order to express formally this situation, the notion of abstract deduction structure linked to an \mathbf{LK}_{ω}-proof P is introduced. That is, new deduction structures are defined that select and exactly represent the inferential contribution of Comp-rules in P; moreover, since the transformations performed by Comp-rules in a tree are also transformations of types, a proof can also be seen as a type transforming machine and this is reflected in these new structures. For example, let us consider the following \exists-R occurrence \mathcal{R}_{γ} in a proof P:

$$X \vdash Y, E_{\gamma}, H_{\gamma} = ((F_{\alpha}(\alpha \equiv \beta) \wedge \gamma \wedge \beta \equiv \beta \equiv \beta) \equiv \gamma) \wedge C_{\alpha} \equiv C_{\alpha} \equiv C_{\alpha}$$

$$\vdash \exists \omega_{\gamma}((E_{\gamma}, w_{\gamma} \wedge C_{\alpha} \equiv C_{\alpha} \equiv C_{\alpha}))$$

where the existential witness for w_{γ} is the term $t_{\gamma}(\wedge C_{\alpha} \equiv C_{\alpha} \equiv C_{\alpha})$.

It is evident that a large set of formulas and types occurring in t_{γ}, which are introduced by many different rules above the considered \exists-R, are deleted and collapsed into the quantified atom w_{γ}. In particular, it is worth noting the action on the types occurring in the proof: there may be an arbitrarily large set of types occurring above \mathcal{R} and in t_{γ}, that do not occur below \mathcal{R}, due to the action of \mathcal{R}. No logical rule different from a Comp-rule may have a similar transformation power: propositional rules preserve the intrinsic structure of each term on which they act, and \forall-R, \exists-L quantifier rules only produce a renaming of their eigenvariables. Therefore, in a cut-free proof P in \mathbf{LK}_{ω}, Comp-rules freely transform the sets of types of subterms occurring in their premise, i.e. they send a term of type α occurring in the premise into a term of type β different from α in the conclusion, and in general no constraint exists that allows to determine α starting from the β-typed term in the conclusion. Such type transformation is possible through the λ-rule too, but in this case only formulas including β-redexes or β-contractums are involved. As to a comparison with the deletion power of cut-rule, it can be observed that this rule has several constraints: two occurrences of the deleted formula must exist, which may be only isolated o-typed
formulas, each in a different sequent, and located antisymmetrically. Differently, there is no constraint to the action of a Comp-rule. Moreover, we must remember that cut-rules can be almost completely eliminated, with the exception of atomic cuts, still preserving the same deduction power; while, it is well known that the elimination of Comp-rules would completely destroy the relevant higher order deduction power.

Definition 3.1. i) Let P be a fixed LKω-proof tree. A *Comprehension Abstract Deduction Structure linked to P* (Comp-ADS in P) is any finite sequence D whose elements are ordered pairs of formula occurrences in P, built as follows:

i.1) a set R of Comp-rule occurrences $\{R_1, \ldots, R_h\}$, $h \geq 1$, has been selected in a single branch of P, such that R_h occurs above R_{h+1} in the branch;

i.2) having fixed R, a sequence D of ordered pairs of formula occurrences $\langle (t_1, t'_1), \ldots, (t_h, t'_h) \rangle$ is chosen, such that t_j occurs as subterm in the auxiliary proposition of R_j and t'_j occurs as subterm in the principal proposition of R_j;

ii) We define the Comp-measure of D to be the cardinality h of the associated set of Comp-rule occurrences R. t_1 in $D \equiv \langle (t_1, t'_1), \ldots, (t_h, t'_h) \rangle$ is the D-axiom, t_h is the D-theorem. If $h=1$ the D-axiom and the D-theorem coincide. Any formula occurrence in an element of D is also called a D-formula. ◇

D-formulas can be seen as ordered by the places they take in the sequence obtained from D by deleting the parentheses of the pairs. Thus, for the sake of brevity, we can sometimes mention the first D-formula, the last D-formula and so on.

Comp ADS’s emphasize the role of the Comp-rules in a deduction. However, no formula in an ADS element, including its so called “theorem” needs actually be a theorem in the theory of types.

Remark 3.1.1 The following properties immediately hold for any Comp-ADS $T \equiv \langle (A_{t_1}, B_{t'_1}), \ldots, (A_{t_h}, B_{t'_h}) \rangle$ in a tree P:

i) The elements of T occur in the same branch of P, and T is ordered with respect to P, i.e. if $C_{t_h} \in \{A_{t_h}, B_{t'_h}\}$ and $m > n$ then $C_{t_m}^w$ occurs in P below $C_{t_n}^w$.

ii) Both the T-axiom A_{t_1} and the T-theorem A_{t_h} occur in a Comp-rule auxiliary proposition. ◇

Not all the Comp ADS’s in a given proof P are equivalently relevant. We are interested in those ADS-properties including significant information and that may hold in a large class of proofs. Moreover, those properties that can select a relevant subset of Comp ADS’s in P, should be decidable. Let us formalize the notion of Comp ADS through the language of arithmetical systems that are able to represent the recursive functions (see [7]).

First, we observe that, for each arbitrary LKω-proof, the property “the sequence \mathcal{M} is a Comp-ADS in P” is a primitive recursive property. Indeed: “(R_1, \ldots, R_h) is a set of Comp-rule occurrences in a single branch of P” (point i.1) of Def 3.1) can be expressed by a Δ_0-formula $B_1(#\langle R_1, \ldots, R_h \rangle, #P)$ which is a boolean combination of recursive primitive predicates applied to arithmetical terms; analogously, the constraints that the sequence $D \equiv \langle (t_1, t'_1), \ldots, (t_h, t'_h) \rangle$ must respect inside $R \equiv \{R_1, \ldots, R_h\}$ (point i.2) of Def 3.1) can be described by a Δ_0-formula $B_2(#\langle t_1, t'_1 \rangle, \ldots, (t_h, t'_h), #R)$. Note that, given R, and only assuming Def. 3.1, D is not determined: in principle, infinitely many procedures can be defined, that select from R different sequences D’s respecting the prescribed constraints; analogously, given P, and only assuming Def. 3.1, R is not determined. Otherwise, the notion of Comp-ADS would be trivial. We wish to formalize the choice process that has produced R from P and then D from R, with the following provisos: we are looking for the definition of a choice rule across all proofs, and for an effective choice rule, i.e. that can be implemented by a Turing machine.

Definition 3.2. Let P be any arbitrary LKω-proof. Recalling Definition 3.1, if $R \equiv \{R_1, \ldots, R_h\}$ and $D \equiv \langle (t_1, t'_1), \ldots, (t_h, t'_h) \rangle$, let the following Δ_0-formulas $B_1(#P, #\langle R_1, \ldots, R_h \rangle)$ and $B_2(#R, #\langle t_1, t'_1 \rangle, \ldots, (t_h, t'_h), #R)$ be constructed in the language of Robinson’s Arithmetic Q, such that: B_1 means “$\{R_1, \ldots, R_h\}$ is a set of Comp-rule occurrences in a single branch of P that respects point i1) of Def 3.1 ,” B_2 means “$D \equiv \langle (t_1, t'_1), \ldots, (t_h, t'_h) \rangle$ is a sequence of pairs of terms that is extracted from R respecting point i2) of Def. 3.1”. Let $G(#P, #R)$ be any Δ_0-formula describing some properties of R w.r.t. P that are not already described by B_1 and let $E(#P, #R, #D)$ be any Δ_0-formula describing some properties of D w.r.t. R and P that are not already described by B_2. Then a Comp ADS choice criterion in P is a Q-formula $F(#P, x)$, x free variable, of the form:

$$\exists r[B_1(#P, r) \land B_2(r, x) \land G(#P, r) \land E(#P, r, x)]$$

8
We say that \mathcal{T} is a Comp ADS in P chosen by the criterion F if the following conditions hold:

1. $Q \vdash F(\#P, \#T)$.
2. Let $\Phi(\#P, z, y) \equiv B_1(\#P, z) \wedge B_2(z, y) \wedge G(\#P, z, y)$ and let $\exists y \Phi(\#P, \#R, y)$ be Q-provable. Then an effective procedure π is Q-derivable from $\exists y \Phi(\#P, \#R, y)$ that, having P and R as input, gives as output a finite set $\{\mathcal{D}_k\}$ of sequences such that $\Phi(\#P, \#R, \#D_k)$ is Q-provable. ◯

The point (2) takes into account that, as to the effective choice process, assuming P as fixed, the relevant input is R and the relevant output is a finite set $\{\mathcal{D}_k\}$ of sequences. Observe that, given P, many Comp ADS's may be selected in P through a same choice criterion. For example, we may have $Q \vdash \Phi(\#P, \#R_1, \#D_1)$ and $Q \vdash \Phi(\#P, \#R_2, \#D_2)$ for two different Comp-rule sets R_1 and R_2, chosen resp. from R_1 and R_2, selected by a same choice criterion F; that is, formally, both $Q \vdash F(\#P, \#D_1)$ and $Q \vdash F(\#P, \#D_2)$ hold. Also the case $Q \vdash \Phi(\#P, \#R_1, \#D_1)$ and $Q \vdash \Phi(\#P, \#R_1, \#D_3)$ is possible, where two different Comp-ADS's \mathcal{D}_1, \mathcal{D}_3, are extracted from R_1 by F. On the other hand, the conditions expressed by any choice criterion $H(\#P, x)$ may be so narrow that no Comp-ADS \mathcal{H} exists in P such that $Q \vdash H(\#P, \#\mathcal{H})$, even if many Comp-rule sequences respecting point 3.1.1.1 of Def.3.1 occur in P. Moreover, different sentences with the form of a choice criterion may produce the same choices. We formalize this last fact through the notion of kind.

Definition 3.3. A kind K of Comp ADS is a class of choice criteria that are Q-provably equivalent. We briefly say that \mathcal{T} is a Comp ADS in a proof P which belongs to the kind K if $Q \vdash F(\#P, \#T)$ for any choice criterion $F(\#P, x)$ which belongs to K. A kind K_1 is stronger than the kind K_2 if any sentence of K_1 Q-implies any sentence of K_2, and the converse does not hold. A Comp-ADS \mathcal{T} is maximal in P if it is not included as a sub-sequence in a different Comp-ADS of the same kind. ◯

Example 3.4. Consider the following proof P:

$\begin{align*}
&z_0 \vdash z_0 & &A_{0-o}y_o \vdash A_{0-o}y_o \\
&z_o \vdash \exists(x_o(x_o) \wedge A_{0-o}y_o) & &\exists R \\
&z_o \vdash \exists A_{0-o}y_o, z_o \vdash \exists(x_o(x_o) \wedge A_{0-o}y_o) & &\exists R \\
&z_o \vdash A_{0-o}y_o, z_o \vdash \exists(w_o(a_o) \rightarrow \exists A_{0-o}y_o, \rightarrow u_o) & &\exists R \\
&z_o \vdash \exists(w_o(a_o) \rightarrow \exists A_{0-o}y_o, \rightarrow u_o) & &\exists R \\
&\forall b_o, (A_{0-o}y_o, z_o) & &\forall L
\end{align*}$

Where at the fourth line from the top we have explicitly written $\exists(w_o(a_o) \rightarrow \exists A_{0-o}y_o, \rightarrow u_o)$, without using the abbreviation $\exists(w_o(x_o(x_o) \wedge u_o))$. The boldface term occurrences constitute the following Comp-ADS \mathcal{M} in P: \mathcal{M} is the sequence $(A_{0-o}B_{0-o}) \equiv ((A_{0-o}u_o, (u_o, u_o), (u_o, u_o)))$, having the following (informally stated) choice criterion: “Choose as R any Comp rule set in P that respects Def. 3.1. Then each \mathcal{M}-formula is the element of a given term ancestor-descendant relation in P” (the ancestor-descendant relation between terms in a given term ancestor-descendant relation in P) will be extensively defined in Section 6, but its essential meaning is intuitive. F defines the ADS’s kind K_1. Moreover, \mathcal{M} has Comp-measure 3, it is maximal, the \mathcal{M}-axiom is A_{0-o} and the \mathcal{M}-theorem is the occurrence of u_o in the last pair. Note that types have been transformed alongside \mathcal{M} from the \mathcal{M}-axiom type $o \rightarrow o$ to the \mathcal{M}-theorem type o. In P various kinds of Comp-ADS’s are possible. Indeed, consider this (informally stated) criterion G: “Choose as R any Comp rule set in P that respects Def. 3.1. Then each \mathcal{M}-formula is the element of a given ancestor-descendant relation in P. Moreover, any Comp-principal proposition in which any ADS-formula different from the last one occurs, must be the auxiliary proposition of a propositional logical rule in P”. Such criterion gives a kind K_2 which is strictly included in K_1, thus K_2 is stronger than K_1 and \mathcal{M} does not belong to K_2. In fact, $\forall u_o$ in the first pair of \mathcal{M} does not respect the K_2-criterion. The following sub-sequence \mathcal{H} of \mathcal{M}: $\mathcal{H} \equiv ((u_o, u_o), (u_o, h_o))$ belongs to K_2. Since K_2 is included in K_1, \mathcal{H} also belongs to K_1. ◯

Many different kinds of Comp ADS’s are possible in a proof P. However, also their relevance can be very different. In particular, to obtain an interesting notion of inferential models, a much finer kind of Comp-ADS’s is needed than that ones shown in Example 3.4. In order to select Comp-ADS’s including relevant information a proof-theoretical analysis is required and it will be presented in Section 6.

Through the Comp-ADS’s an association can be established between the deduction performed in an LK_o-tree P and types:

Definition 3.5. (Inferential type of a Comp-ADS in P)
i) Let \(\mathcal{T} \) be a Comp-ADS in a \(\mathbf{LK}_{\omega_1} \)-proof P, with (P, \(\mathcal{T} \))-axiom \(A_\gamma \) and (P, \(\mathcal{T} \))-theorem \(B_\delta \). The \textit{inferential type} \(\tau(\mathcal{T}) \) of \(\mathcal{T} \) is the type \(\gamma \rightarrow \delta \). If \(\mathcal{T} \) has Comp-measure 1, the inferential type is that of the \(\mathcal{T} \)-axiom.

ii) Fixing a kind \(K \) of Comp-ADS in P, a Comp-ADS \(\mathcal{T} \) is a \textit{main Comp-ADS in P} if it has an inferential type \(\tau(\mathcal{T}) \) of the highest height \(h(\tau) \) in the kind. P is \textit{monic with respect to K} if it has a unique main Comp-ADS of kind \(K \). If P is monic w.r.t. \(K \) with main Comp-ADS \(\mathcal{T} \), then \(\tau(\mathcal{T}) \) is also the \textit{inferential type of P with respect to K}. In a \(K \)-monic tree P a Comp-rule occurrence is called \textit{main} if it includes, in the auxiliary proposition, the theorem of the main \(K \)-Comp-ADS of P.

The notion of inferential type is related to the deduction expressed by the ADS: it types the link between the ADS-axiom and the ADS-theorem. Moreover, it relates types and proof-trees in a new way.

3.3. Inferential Algebras based on Comprehension-Abstract Deduction Structures

We wish to construct models which manipulate sequent-trees and that are linked to the notion of Comp-ADS.\(^5\)

Thus, we need particular objects called \textit{potential proof-trees} (not to be confused with real proof-trees).

Definition 3.6. For each type \(\alpha \) new list of formal metavariables \(... \gamma_\alpha, ... \) is added to the language of \(\mathbf{LK}_{\omega_1} \), with the stipulation that they never occur in the \(\mathbf{LK}_{\omega_1} \)-proofs. They are called \textit{syntactic parameters}.

Definition 3.7. A potential proof-tree \(P \) in \(\mathbf{LK}_{\omega_1} \) is a tree in which some leaves are potential logical axioms of the form \(\Gamma \vdash B \), where \(B \) is an arbitrary \(o \)-typed formula and \(\Gamma \) a syntactic parameter of type \(o \) which is potentially replaceable by any set of formulas of type \(o \). In a potential proof-tree syntactic parameters can be employed as free variables.

As to the construction of the potential proof-trees of the inferential domains (Definition 3.9), only syntactical parameters will be employed as free variables. This because in the assignments \(\varphi \) of the free variables of the \(\mathbf{LK}_{\omega_1} \)-language, it shouldn’t be the case that for a free variable \(a_\beta \), \(a_\beta \) itself occurs in \(\varphi(a_\beta) \in D_\beta \), where \(D_\beta \) is a domain composed by potential proof-trees.

Having defined the Comp-ADS’s and their inferential types, an informal sketch of the aims of inferential models can be stated: formulas of full higher order logic are modeled through instances of the Comprehension Axiom, by employing domains formed by \(\mathbf{LK}_{\omega_1} \)-potentential proof trees, in which suitable kinds of Comp-ADS’s occur. Moreover, a constructive inferential algebra (Definition 3.9) between the trees of the domains is defined, so that logical connectives are modeled by corresponding operations between trees.

Definition 3.8. Let \(A_\delta \) be a formula of the form \(B_\gamma \rightarrow \delta C_\gamma \) where \(C_\gamma \) is an atom. Then we say that \(B_\gamma \rightarrow \delta \) is the \textit{significant leftmost component} of \(A_\delta \).

Definition 3.9. Let \(K \) be a kind of Comp-ADS such that, if \(F \) is a choice criterion (Def. 3.2) in \(K \), for each type \(\beta \) a denumerable set of pairs (P, \(\mathcal{T} \)) exists with \(Q \vdash F(\#P, \#\mathcal{T}) \) and inferential type \(\{\mathcal{T}\} \equiv \beta \), Q Robinson’s Arithmetic. Then, the class of \textit{K-based inferential domains} \(\{K \mathbf{D}_\alpha\}_{\alpha \in \text{types}} \) of modular \(\mathbf{LK}_{\omega_1} \)-trees, and an inferential algebra on \(\cup_{\alpha \in \text{types}} K \mathbf{D}_\alpha \), are defined as follows:

i) a recursive bijection: \(g(\alpha, \beta) : \{A_\alpha : A_\alpha \text{ closed formula}\} \times \{A_\beta : A_\beta \text{ closed formula}\} \rightarrow \{A_{\alpha \rightarrow \beta} : A_{\alpha \rightarrow \beta} \text{ closed formula}\} \) is given for each pair \((\alpha, \beta) \) of types, which is the \textit{canoncal bijection} of the algebra. The formulas in which syntactic parameters occur, are also included in the domain and in the codomain of \(g \).

ii) \(K \mathbf{D}_\alpha \) (resp. \(K \mathbf{D}_\gamma \)) is a denumerable set of \(\mathbf{LK}_{\omega_1} \)-potential proof trees (Definition 3.7) that have a main Comp-ADS of kind \(K \), that are \(K \)-monic and have \(K \)-inferential type \(o \) (resp. \(i \)) (Definition 3.5); this is the set of \(K \)-modular trees of inferential type \(o \) (resp. \(i \)).

iii) Let \(K \mathbf{D}_\gamma \) be the set of \(K \)-modular trees of inferential type \(\gamma \) and let \(K \mathbf{D}_\delta \) be the set of \(K \)-modular trees of inferential type \(\delta \); then a recursive procedure \(\Rightarrow \) is given, acting on the pairs \((Q_\gamma, Q_\delta) \in \mathbf{D}_\gamma \times \mathbf{D}_\delta \), such that:

iii.1) \((Q_\gamma, Q_\delta) \) is a tree of \(K \)-inferential type \(\gamma \rightarrow \delta \).

iii.2) The theorem \(B_\delta \) of the main Comp-ADS of \(\Rightarrow \) has the form \(B_\delta \equiv g(F_\gamma, E_\delta)C_\gamma \), where \(C_\gamma \) is an atom and \(E_\gamma \rightarrow \delta \equiv g(F_\gamma, E_\delta) \) is the \textit{canonical component} of \(B_\delta \), such that: \(F_\gamma \) (resp. \(E_\delta \)) is the significant leftmost component (Def. 3.8) of the theorem of the main Comp-ADS of \(Q_\gamma \) (resp. \(Q_\delta \)) if \(\gamma \) (resp. \(\delta \)) is not primitive; \(F_\gamma \)

\(^5\) Definition 3.9 of inferential algebra based on a kind \(K \) of Comp-ADS is the second key definition of the paper. To visualize operations between trees may be difficult. For a synthetic insight, it could be useful to go directly to Section 7 and see (omitting the details) the constructions in STEP 1 of Lemma 7.2, or to go to the Appendix and see the first part of Example A1. Also the comments below Remark 3.3 can help to imagine how in any inferential algebra the trees of higher inferential type are produced from trees of lower inferential types.
is the theorem of the main Comp-ADS of \(Q_\gamma \) (resp. \(Q_\delta \)) if \(\gamma \) (resp. \(\delta \)) is primitive. In the trees of the domains \(^{K}D_\alpha \) and \(^{K}D_\delta \) the canonical component of the main Comp-ADS theorem coincides with the theorem itself.

iv) The set of the trees of the form \(\Rightarrow \langle Q_\gamma, Q_\delta \rangle \) constitutes the domain \(^{K}D_{\gamma\rightarrow\delta} \). The procedure \(\Rightarrow \) defines a recursive function \(^{K}D_\gamma \times ^{K}D_\delta \rightarrow ^{K}D_{\gamma\rightarrow\delta} \). \(Q_\gamma \) \(\Rightarrow \) \(Q_\delta \) denotes the tree \(\Rightarrow \langle Q_\gamma, Q_\delta \rangle \), and \(\Rightarrow \) is called the abstraction operation of the inferential algebra. \(Q_\gamma, Q_\delta \) are the abstracted trees of the abstraction tree \(Q_\gamma \Rightarrow Q_\delta \).

v) Having constructed the domains \(\{ ^{K}D_\alpha \}_{\alpha\in\text{types}} \), for each pair of types of the form \(\gamma \) and \(\gamma \rightarrow \delta \) a recursive function \(^{K}D_{\gamma\rightarrow\delta} \times ^{K}D_\gamma \rightarrow ^{K}D_\delta \) is given, such that the tree \(^{\ast}\langle Q_\gamma, Q_\delta \rangle \) is a tree of \(K \)-inferential type \(\delta \). \(Q_\gamma \rightarrow \delta \) is the application operation of the inferential algebra. \(Q_\gamma, Q_\delta \) are the contracted trees in the application tree \(Q_\gamma \rightarrow \delta \ast Q_\gamma \).

vi) The set \(\cup_{\alpha\in\text{types}} ^{K}D_\alpha \) of \(K \)-modular trees of arbitrary inferential types with the operations abstraction \(\Rightarrow \) and application \(^{\ast} \), is called an inferential algebra of \(LH_{\omega} \)-potential proof trees based on the Comp-ADS’s of kind \(K \), which we also write \(\langle g, \{ ^{K}D_\alpha \}_{\alpha\in\text{types}}, \Rightarrow, ^{\ast} \rangle \).

\[\triangleq \]

Remark 3.9.1

i) Each tree \(Q_\gamma \rightarrow \delta \in ^{K}D_{\gamma\rightarrow\delta} \) defines a recursive function \(Q_{\gamma\rightarrow\delta} \vdash ^{\ast} \cdot ^{K}D_\gamma \rightarrow ^{K}D_\delta \) such that \(Q_{\gamma\rightarrow\delta} \vdash ^{\ast} \cdot \) applied to the argument \(Q_\gamma \) is \(Q_{\gamma\rightarrow\delta} \ast Q_\gamma \).

ii) The only notion of identity which a priori holds between the trees of the algebra is the syntactical identity.

iii) At point iii) of def. 3.9 the difference between primitive and compound types as to the inferential types of the trees in the argument of \(\Rightarrow \) depends on the fact that the trees of the domains \(^{K}D_\alpha \) and \(^{K}D_\delta \) are not obtained by abstraction operation, and their main Comp-ADS theorem has a fixed type but may have an arbitrary form.

\[\triangleq \]

The abstraction operation \(\Rightarrow \) acts at two levels: at the level of tree-structure, by producing in the abstraction tree \(Q_\gamma \Rightarrow Q_\delta \) a main Comp-Ads of kind \(K \) and inferential type \(\gamma \rightarrow \delta \), and at the level of the formula-structure, by producing in the abstraction tree \(Q_\gamma \Rightarrow Q_\delta \) a main Comp-ADS theorem \(B_\delta \) including a subformula of type \(\gamma \rightarrow \delta \) in a canonical way. It is the canonical bijection \(g \) that describes the behaviour of the algebra at the formula level. Observe that the main Comp-Ads theorem of a monic tree (briefly: the \(ADS-theorem \) of the tree) with inferential type \(\gamma \rightarrow \delta \) cannot have type \(\gamma \rightarrow \delta \). Only in the case of primitive types a tree of inferential type \(i \) or \(o \) has the \(ADS-theorem \) with type \(i \) or \(o \). Thus, in order to obtain in \(Q_\gamma \Rightarrow Q_\delta \) an \(ADS-theorem \) that expresses a kind of abstraction operation between the \(ADS-theorems \) of the two abstracted tree, we select the leftmost component. It is worth noting that, this way, some choices for the canonical bijection \(g \) are possible which would produce algebras where in the abstracted trees \(Q_\gamma \Rightarrow Q_\delta \) the \(ADS-theorem \) includes a \(\lambda \)-abstraction involving the (leftmost components of the) \(ADS-theorems \) of the abstracted trees (see Section 11.2). Thus, given \(Q_\gamma, Q_\delta \), on one hand the inferential type of \(\Rightarrow \) \(\langle Q_\gamma, Q_\delta \rangle \) is constrained by the inferential types of the abstracted trees, on the other hand the \(ADS-theorem \) of \(\Rightarrow \) \(\langle Q_\gamma, Q_\delta \rangle \) canonically depends on \(ADS-theorems \) of the abstracted trees.

The class of modular potential proof trees based on Comp-ADS’s of some relevant kind \(K \) has the suitable generality both for the representation of the main properties of a \(LH_{\omega} \)-deduction and for the modeling of typed formulas and logical connectives. One of the main challenges this paper tries to meet in the next sections is to select a kind \(K \) of Comp-ASD’s including relevant information and, simultaneously, allowing the technical transformations between trees that produce the inferential algebra \(\langle g, \{ ^{K}D_\alpha \}_{\alpha\in\text{types}}, \Rightarrow, ^{\ast} \rangle \): indeed, the operations of the algebra act essentially on the main Comp-ADS’s of the two involved monic trees.

4. Inferential Interpretations of typed formulas in the domains of an Inferential Algebra

The aim is to introduce an interpretation \(V \) from the set \(\cup_{\alpha\in\text{types}} \{ B_\alpha : B_\alpha \text{ closed formula of type } \alpha \} \) into \(\cup_{\alpha\in\text{types}} ^{K}D_\alpha \) that links each sentence \(B_\alpha \) to a potential proof-tree in \(^{K}D_\alpha \). It is desirable that such link is injective, recursive, and such that the potential proof-tree associated to \(B_\alpha \) contains effective information on the structure of \(B_\alpha \). Moreover, the set of potential proof trees in \(\cup_{\alpha\in\text{types}} ^{K}D_\alpha \) that are associated by \(V \) to the \(LH_{\omega} \)-sentences should be closed under \(\Rightarrow, ^{\ast}, \) i.e. it must be an inferential sub-algebra of \(\langle g, \{ ^{K}D_\alpha \}_{\alpha\in\text{types}}, \Rightarrow, ^{\ast} \rangle \).

Definition 4.1. Let \(K \) be a fixed kind of Comp-ADS’s, let \(\langle g, \{ ^{K}D_\alpha \}_{\alpha\in\text{types}}, \Rightarrow, ^{\ast} \rangle \) be a fixed inferential algebra (Definition 3.6) and let \(B_\alpha \) be a \(LH_{\omega} \)-closed formula; then an inferential interpretation for \(LH_{\omega} \) based on \(K \) is an injective recursive function:

\[V : \cup_{\alpha\in\text{types}} \{ B_\alpha : B_\alpha \text{ closed formula } \} \rightarrow \langle g, \{ ^{K}D_\alpha \}_{\alpha\in\text{types}}, \Rightarrow, ^{\ast} \rangle \]
such that \(V(B_\alpha) \) must be recursively constructable given \(B_\alpha \), having the following properties:

i) \(V(B_\alpha) \in \mathbb{S} \mathbb{D}_\alpha \), it is a monic proper proof-tree of \(K \)-inferential type \(\alpha \), i.e. having a unique main \(K \)-Comp-ADS \(\mathcal{T} \).

ii) \(B_\alpha \) is the canonical component (Def. 3.9.ii) of the theorem \(A_\beta \) of the main Comp-ADS \(\mathcal{T} \) of \(V(B_\alpha) \).

iii) The set \(\cup_{\alpha \in \text{types}} \{ V(F_\alpha) \} \) with the operations \(\Rightarrow, \ast \), is a proper sub-algebra of \(\langle g, \{ \mathbb{S} \mathbb{D}_\alpha \}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle \).

\[\diamond \]

Definition 4.2. An inferential interpretation \(V \) is functionally sound if the following properties hold:

i) \(V(A_{\gamma \rightarrow \delta}) \ast V(B_\gamma) \) is identical to \(V(A_{\gamma \rightarrow \delta} B_\gamma) \) \(\in \{ V(F_\delta) \} \subset \mathbb{S} \mathbb{D}_\delta \);

ii) \(V(A_\theta) \Rightarrow V(B_\eta) \) is identical to \(V(g(A_\theta, B_\eta)) \) \(\in \{ V(F_\theta \Rightarrow \eta) \} \subset \mathbb{S} \mathbb{D}_0 \Rightarrow \eta \), \(g \) canonical bijection of the algebra.

\[\diamond \]

Remark 4.3. If \(V \) is any inferential interpretation, it can be noted that:

1) Each \(V(F_{\gamma \rightarrow \delta}) \) can be identified, by application, with a recursive function \(\{ V(B_\gamma) : B_\gamma \text{ closed formula } \} \rightarrow \{ V(A_\theta) : A_\theta \text{ closed formula } \} \). The set \(\{ V(F_{\gamma \rightarrow \delta}) : F_{\gamma \rightarrow \delta} \text{ closed formula } \} \) is a countable sub-set of the set of the recursive functions \(\mathbb{S} \mathbb{D}_\gamma \rightarrow \mathbb{S} \mathbb{D}_\delta \).

2) Through \(V \) the sentence \(B_\gamma \) is expressed as an inference having a specific higher order character, that is as an elementary higher order deduction structure. This aspect will be modeled principally by the main Comp-ADS \(\mathcal{T} \) of \(V(B_\gamma) \), the inferential type of which is \(\gamma \). Moreover, since \(B_\gamma \) explicitly occurs as a leftmost term of the \(\mathcal{T} \)-theorem, the main logical connective of \(B_\gamma \) is the leftmost symbol of the theorem of \(\mathcal{T} \).

3) If \(V \) is functionally sound then it behaves soundly w.r.t. the term application of the language.

\[\diamond \]

Theorem 4.4 (Main Theorem). A kind \(K \) of Comp-ADS's is definable such that:

i) The set of inferential algebras of modular \(\mathbb{L} \mathbb{K}_0 \)-trees \(\langle g, \{ \mathbb{S} \mathbb{D}_\alpha \}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle \) based on \(K \) is not empty.

ii) An algebra \(\mathcal{A} \equiv \langle g, \{ \mathbb{S} \mathbb{D}_\alpha \}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle \) is definable, having a sub-algebra with all the properties required for the image of an inferential interpretation, and such that the set of the functionally sound inferential interpretations \(V \) of the \(\mathbb{L} \mathbb{K}_0 \)-sentences is not empty.

Thus, logical connectives are interpreted in \(\mathcal{A} \) as follows: if \(\star \) is a binary logical connective then \(\star B_\beta \) \(A_\gamma \) is interpreted by \(V(\star) \ast V(B_\beta) \ast V(A_\gamma) \); if \(\triangledown \) is a monadic logical connective then \(\triangledown B_\beta \) is interpreted by \(V(\triangledown) \ast V(B_\beta) \). The interesting fact is that \(V(\star) \) and \(V(\triangledown) \) are potential proof-trees, i.e. that the connective becomes a potential proof. Thus, the intended semantics of connectives in constructive logic becomes here explicit and formal. The proof of Main Theorem will be shown in Section 8, after the definition, in Sections 6 and 7, of the Comp-ADS kind (i.e. the critical chains) and of the inferential algebra that allow the stated results. An example of inferential interpretation is given in Appendix A1.

5. Inferential Semantics structures and truth

Inferential algebras and inferential interpretations provide a full semantics for \(\mathbb{L} \mathbb{K}_0 \), which will be called inferential semantics, admitting soundness and completeness theorems. The main notion introduced in this section is that of inferential structure, where the truth of an \(\mathbb{L} \mathbb{K}_0 \)-formula is defined. A preliminary notion is that of inferential frame, where a semantical identity relation between trees which are interpretations of the form \(V(B_\alpha) \) is established.

Definition 5.1. We call higher order system any system \(\Delta \) such that: i) the language of \(\Delta \) is an expansion of the \(\mathbb{L} \mathbb{K}_0 \)-language at most through a denumerable set of new primitive non-logical constants for each type \(\gamma \); ii) the rule set \(\text{Ru}(\Delta) \) of \(\Delta \) is included in that of \(\mathbb{L} \mathbb{K}_0 \); iii) \(\Delta \) has a possibly empty set \(\text{Ax}(\Delta) \) of proper axioms, and the same logical axioms as \(\mathbb{L} \mathbb{K}_0 \).

\[\diamond \]

Definition 5.2. Let \(\Delta \) be a consistent higher order system. Then, if \(\mathcal{A} \equiv \langle g, \{ \mathbb{S} \mathbb{D}_\alpha \}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle \) is an inferential algebra and \(G \) an inferential interpretation, an inferential semantics frame (briefly inferential frame) is a triple \(\mathcal{F} \equiv \langle \{ \mathbb{S} \mathbb{D}_\alpha \}, G, \Delta, \approx \rangle \) where \(\approx \) is the semantical identity relation established by \(\mathcal{F} \) between those elements of \(\mathbb{S} \mathbb{D}_\alpha \) that are images of \(G \), so that \(G(A_\alpha) \Rightarrow G(B_\alpha) \) iff a proof in \(\Delta \) exists of the sentence \(A_\alpha =_\Delta B_\alpha \).

\[\diamond \]

Therefore, in a broad sense, a frame identifies two interpretation trees if the relevant components of the theorems of their main Comp-ADS’s are provably equal in the system of the frame. However, it is meaningless to speak of the truth of a formula in a generic frame \(\mathcal{F} \), if previously it hasn’t been checked that \(\mathcal{F} \) is a sound denotation with respect to the logical constants and that sound assignments on variables are possible.
Definition 5.3. An inferential frame $\mathcal{F} \equiv (\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv)$ is a sound functional denotation for the logical constants and the equality symbol \equiv. If \mathcal{V} is functionally sound and the following conditions hold:

i) $\mathcal{V}(\bigwedge_{\alpha \neq o}) \equiv \mathcal{V}(\bigwedge_{\alpha \neq o}) \equiv \mathcal{V}(T)$ iff $\mathcal{V}(B_o) \equiv \mathcal{V}(T)$ and $\mathcal{V}(C_o) \equiv \mathcal{V}(T)$;

$\mathcal{V}([\bigwedge_{\alpha \neq o}) \equiv \mathcal{V}(\bigwedge_{\alpha \neq o}) \equiv \mathcal{V}(\perp)$ otherwise.

ii) $\mathcal{V}(\bigvee_{\alpha \neq o}) \equiv \mathcal{V}(\bigvee_{\alpha \neq o}) \equiv \mathcal{V}(T)$ iff one between $\mathcal{V}(B_o)$ and $\mathcal{V}(C_o)$ is $\equiv \mathcal{V}(T)$;

$\mathcal{V}(\bigvee_{\alpha \neq o}) \equiv \mathcal{V}(\bigvee_{\alpha \neq o}) \equiv \mathcal{V}(\perp)$ otherwise.

iii) $\mathcal{V}(\neg_a) \equiv \mathcal{V}(T)$ iff $\mathcal{V}(A_o) \equiv \mathcal{V}(\perp)$.

iv) $\mathcal{V}(\bigcap_{\alpha \neq o}) \equiv \mathcal{V}(\bigcap_{\alpha \neq o}) \equiv \mathcal{V}(T)$ iff either $\mathcal{V}(B_o) \equiv \mathcal{V}(\perp)$ or $\mathcal{V}(C_o) \equiv \mathcal{V}(T)$;

$\mathcal{V}(\bigcap_{\alpha \neq o}) \equiv \mathcal{V}(\bigcap_{\alpha \neq o}) \equiv \mathcal{V}(\perp)$ otherwise.

v) $\mathcal{V}(\forall_{\Delta}) \equiv \mathcal{V}(\forall_{\Delta}) \equiv \mathcal{V}(T)$, iff $\mathcal{V}(\lambda x \alpha B_o) \equiv \mathcal{V}(T)$ for each closed formula h_α of the Δ-language;

$\mathcal{V}(\forall_{\Delta}) \equiv \mathcal{V}(\forall_{\Delta}) \equiv \mathcal{V}(\perp)$ otherwise.

vi) $\mathcal{V}(\exists_{\Delta}) \equiv \mathcal{V}(\exists_{\Delta}) \equiv \mathcal{V}(T)$, iff $\mathcal{V}(\lambda x \alpha B_o) \equiv \mathcal{V}(T)$ for at least a closed formula h_α of the Δ-language;

$\mathcal{V}(\exists_{\Delta}) \equiv \mathcal{V}(\exists_{\Delta}) \equiv \mathcal{V}(\perp)$ otherwise.

vii) $\mathcal{V}(\equiv_{\Delta}) \equiv \mathcal{V}(\equiv_{\Delta}) \equiv \mathcal{V}(T)$ iff $\mathcal{V}(A_o) \equiv \mathcal{V}(B_o)$.

\[\diamond\]

The soundness of the logical constants \perp, T, holds in each frame $\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv$, since $\mathcal{V}(\perp) \equiv \mathcal{V}(T)$ is never possible due to the consistency of Δ.

Definition 5.4. Given an inferential frame $\mathcal{F} \equiv (\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv)$, an assignment on the free variables associated to \mathcal{F} is a function $\varphi : \{\text{free variables of } \mathcal{L}_{K\alpha}\text{-language}\} \rightarrow \cup_{\Delta}^{\mathcal{K}_D}$ such that $\varphi(a_\gamma) \in \mathcal{K}_D \cap \text{Im} \mathcal{V}$. A φ-variant is an assignment ψ coinciding with φ, with the exclusion of a fixed h_α such that $\varphi(h_\alpha)$ is different from $\psi(h_\alpha)$.

\[\varphi(a_\gamma)\] is therefore a potential proof-tree $\mathcal{V}(C_\gamma)$ for some closed formula C_γ.

Definition 5.5. Let $\mathcal{F} \equiv (\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv)$ be an inferential frame, and φ an assignment on the free variables associated to it. Then, an interpretation function of the typed formulas based on the pair (\mathcal{F}, φ), is a function $\mathcal{V}_\varphi : \{\mathcal{F}_\alpha : \alpha \text{ a type}\} \rightarrow \cup_{\Delta}^{\mathcal{K}_D}$, so that $\mathcal{V}_\varphi(H_\alpha) \in \cup_{\Delta}^{\mathcal{K}_D}$, which is defined as follows: $\mathcal{V}_\varphi(F_\beta)$ is $\mathcal{V}(F_\beta)$ iff F_β is closed, $\mathcal{V}_\varphi(A_\alpha)$ is $\mathcal{V}(A_\alpha^e)$ iff A_β is open, A_β^e being the closed formula obtained from A_β by replacing each free variable a_γ with the unique closed formula C_γ such that $\varphi(a_\gamma) \equiv \mathcal{V}(C_\gamma)$.

Note that, by definition, for each free variable $a_\gamma, \mathcal{V}_\varphi(a_\gamma) = \varphi(a_\gamma)$. The soundness of the denotation w.r.t. the λ-abstraction of variables must also be imposed, getting the notion of inferential structure.

Definition 5.6. Let $\mathcal{M} \equiv (\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv)$ be an inferential frame which is a sound functional denotation for the logical constants and the equality symbol \equiv. For each assignment φ on the free variables associated to \mathcal{M}, let \mathcal{V}_φ be the interpretation based on the pair (\mathcal{M}, φ); then \mathcal{M} is an inferential structure based on the algebra $\mathcal{A} \equiv (\langle \mathcal{K}_D \rangle \text{ a type}\), \varphi, \ast)$, if the following condition holds: $\mathcal{V}_\varphi(\lambda x \alpha B_o)$ is the potential proof-tree $P \in \mathcal{K}_D$ such that, for each closed α-typed formula F_α, $P \ast \mathcal{V}(F_\alpha) \equiv \mathcal{V}_\varphi(A_\beta) \in \mathcal{K}_D$, where ψ is the φ-variant of φ which maps the free variable b_α corresponding to x_α and not occurring in $\lambda x_\alpha A_\beta$, into $\psi(b_\alpha) \equiv \mathcal{V}(F_\alpha)$.

Inside an inferential structure the notion of truth can be defined:

Definition 5.7. Let $\mathcal{M} \equiv (\langle \{\mathcal{K}_D\} \rangle, \mathcal{V}, \Delta, \equiv)$ be an inferential structure. Then, a closed α-typed formula A is true in \mathcal{M} iff $\mathcal{V}(A) \equiv \mathcal{V}(T)$, it is false iff $\mathcal{V}(A) \equiv \mathcal{V}(\perp)$. An open α-typed formula B is true with respect to an interpretation \mathcal{V}_φ based on the pair (\mathcal{M}, φ) iff $\mathcal{V}_\varphi(B) \equiv \mathcal{V}(T)$, it is false iff $\mathcal{V}_\varphi(B) \equiv \mathcal{V}(\perp)$.

A closed α-typed formula A is possibly true in \mathcal{M} if neither $\mathcal{V}(A) \equiv \mathcal{V}(T)$ nor $\mathcal{V}(A) \equiv \mathcal{V}(\perp)$ holds.

\[\diamond\]
Note that sentences A possibly true in M are such that both A and $\neg A$ are Δ-consistent. We will not develop a multivalued semantics inside inferential structures in this paper, and as to the completeness result (Section 9) we will consider structures $\langle \{K\alpha\}, V, \Delta, \equiv \rangle$ where Δ is a syntactically complete system. However, such three-valued denotation could have a role in the inferential semantics for constructive logics, which is a work in progress (Section 11).

Definition 5.8. Given a consistent system Λ extending LK_{ω} and an inferential structure $M \equiv \langle \{K\alpha\}, V, \Delta, \equiv \rangle$, such that Δ and Λ have the same language, M is an inferential model of Λ iff the Λ-theorems are true in M.

It must be remarked that $\Delta \vdash B \equiv_o T$ is a necessary but not a sufficient condition for the truth of B in the inferential structure $M \equiv \langle \{K\alpha\}, V, \Delta, \equiv \rangle$. The central requirements are the properties of the inferential algebra $A \equiv \langle g, \{K\alpha\}_{\alpha \in \text{types}}, \Rightarrow, * \rangle$ that allow M to be a sound denotation. For example, a frame of the form $\langle \{K\alpha\}, V, LK_{\omega}, \equiv \rangle$ is not, in general, an inferential model of LK_{ω}.

Theorem 5.9 (Inferential Semantics Theorem). A kind K of Comp-ADS’s is definable such that:

i) The class of inferential structures based on the algebra $A \equiv \langle g, \{K\alpha\}_{\alpha \in \text{types}}, \Rightarrow, * \rangle$ is not empty.

ii) LK_{ω} is sound and complete with respect to the class of inferential structures based on $A \equiv \langle g, \{K\alpha\}_{\alpha \in \text{types}}, \Rightarrow, * \rangle$.

The proof of Theorem 5.9 above is presented in Section 9.

Finally, a sound and complete inferential semantics for functional type theory shows that each functional typed formula is itself a kind of potential higher order inference, which includes Comp-rules; simultaneously, each formula can be seen as a recursive function from proofs to proofs.

6. The critical chain abstract deduction structure

The theses of Theorems 4.4 and 5.9 establish the main goals of the paper, and the sections from 6 to 9 will provide the proofs of such theorems. To this end, in this Section, a particular kind of Comp-ADS in a LK_{ω}-tree will be defined: the critical chain ADS.7 It is useful to choose as elements of a Comp-ADS terms which are connected by a logical link that takes into account the ancestor-descendant relation in a proof. It can be observed that the chains of formulas connected by a suitable ancestor-descendant relation on a branch of a tree, can sometimes better express the inference content of a proof; this method has played a central role in the proof-theoretic demonstration of the arithmetical completeness of modal logic by Gentilini [11, 12, 13]. Nevertheless, in the LK_{ω} setting, there are different possible ancestor-descendant relations among formulas in a proof P. That is, the definition of the relation used for the first order logic trees (see, e.g., [27] p. 78) is not sufficient for LK_{ω}-trees. In LK_{ω} there are the following new situations:

a) The distinction between terms and formulas, that characterizes the standard first order setting, disappears; moreover, no constraints are given for the position of an o-typed formula in a context in a tree; then, there is the further notion of isolated formula in an LK_{ω}-sequent (Section 2.3) that allows an ancestor descendant relation which links formulas of type o that also are isolated formulas (Definition 2.8). This is the isolated ancestor-descendant relation, (isolated a.d. relation Definition 6.5), which expresses the action of propositional logical rules, and that mutually connects the auxiliary and principal propositions (Definition 2.9) of a rule occurrence.

b) However, also an ancestor descendant relation between arbitrary terms must be specified, and, in the most general case, it will link terms having different types. In this relation the type o will not have any particular status. This is the term ancestor-descendant relation (term a.d. relation Definition 6.8), which expresses the action of the Comp-rules and of the λ-rule.

Both relations are necessary in order to select Comp-Abstract Deduction Structures that express the relevant inference performed in a proof. In this section these two different relations will be defined.8

7In Section 6 all the presented notions are new. In order to help the reader to preserve an intuitive control of the main line of the paper, we suggest the following approach: go directly to Def. 6.14 of critical chain, which is the key definition of the section. Some details will not be clear; however, a fundamental point can be noticed, i.e. that in the proof-theoretic examination of higher order sequent trees, two different ancestor-descendant relations are necessary: the first among isolated formulas, the second among terms. Then, go directly to Examples 6.17 and 6.18, where some critical chains occurring in higher order trees are effectively presented, and intuitively focus what are the peculiar properties of such ADS kind. At this point, the first part of the section, where a fine analysis of higher order proofs is developed to get the definitions of the two different ancestor-descendant relations mentioned above, should acquire a stronger motivation.

8An heuristic example is the following:

\[
X \vdash Y, A_{\omega \rightarrow o}, (B_{\omega \rightarrow o}, C_{\omega \rightarrow o}) \quad -R
\]

\[
X \vdash Y, \exists \tau_{\tau_{\omega \rightarrow o}}(A_{\omega \rightarrow o})
\]
Definition 6.1. [Auxiliary and principal terms in a rule occurrence] Let \mathcal{R} be a logical rule occurrence (Section 2.4), in an LKao-proof P. Then:

i) If \mathcal{R} belongs to the propositional logical rules, an auxiliary term of the rule is any formula-occurrence which is a sub-term of an auxiliary proposition (Definition 2.9) of the rule, and a principal term of the rule is any formula-occurrence which is a sub-term of the principal proposition (Definition 2.9) of the rule. In \lor-R and \land-L rules, the non isolated o-typed formula introduced as maximal disjunct (conjunct) in the principal proposition is called the **maximal non isolated introduced term** of the rule and belongs to the set of the principal terms of the rule.

ii) If \mathcal{R} is a λ-rule, an auxiliary term of \mathcal{R} is any term occurrence in any \mathcal{R}-auxiliary proposition in the premise, that is included in a β-redex or β-contractum which is reduced or replaced by \mathcal{R}; a principal term of \mathcal{R} is any term occurrence in any \mathcal{R}-principal proposition in the conclusion, that is included in a β-redex or β-contractum which is produced by \mathcal{R}; a **maximal auxiliary term** is any auxiliary term not included in any different auxiliary term, and a maximal principal term is any principal term not included in any different principal term.

iii) If \mathcal{R} is a logical rule for quantifiers \forall-R, \exists-L, an auxiliary term of \mathcal{R} is any occurrence of the eigenvariable h_{α} in the premise, and a principal term of \mathcal{R} is any corresponding occurrence of the bound variable x_{α} in the principal proposition of \mathcal{R} in the conclusion.

iv) If \mathcal{R} is a Comp-rule, a **maximal auxiliary term** of \mathcal{R} is any occurrence of the formula t_{α} on which the quantification acts in the premise, and a principal term of \mathcal{R} each corresponding occurrence of the bound variable x_{α} in the principal proposition of \mathcal{R} in the conclusion. An auxiliary term of \mathcal{R} is any occurrence of a formula as a sub-term in a maximal auxiliary term in the premise. ♦

Remark 6.2. i) Auxiliary and principal terms of each rule may range among formulas of arbitrary type. Notice that the expressions “auxiliary term” and “principal term” always indicate a term occurrence in a given context, and not simply a term.

ii) Each auxiliary term occurs in an auxiliary proposition and each principal term occurs in a principal proposition; however, if the rule is not a propositional logical rule, the set of auxiliary or principal terms is in general a proper subset of the sub-terms of the respective auxiliary or principal propositions (e.g., this is the case of quantifier rules).

iii) If t_{α} is a maximal auxiliary term in a Comp-rule premise S, it may however happen that in S other occurrences of t_{α} exist that are not auxiliary terms of the rule. Moreover, the set of the different terms and types which occur as auxiliary terms in the maximal auxiliary t_{α}, may be arbitrarily large. Conversely, each principal term in a Comp-rule is an atom.

♦

Example 6.3. Consider the following proof P:

\[
\begin{align*}
\frac{z_0 \vdash z_0}{\exists y_0 (x_0) \vdash A_{\alpha\rightarrow 0} y_0} & \quad \frac{A_{\alpha\rightarrow 0} y_0 \vdash A_{\alpha\rightarrow 0} y_0}{A_{\alpha\rightarrow 0} y_0 \vdash \exists y_0 (x_0) \land A_{\alpha\rightarrow 0} y_0} \\
A_{\alpha\rightarrow 0} y_0, \exists y_0 (x_0) \vdash \exists u_0 (\exists y_0 (x_0) \land u_0) & \quad \exists y_0 (x_0) \vdash z_0
\end{align*}
\]

where we recall that the writing $\exists y_0 (x_0)$ is an abbreviation for $\exists (\alpha\rightarrow 0)(\alpha\rightarrow 0) \lambda x_0 x_0$. The maximal auxiliary term of the uppermost \exists-R is z_0, which is the only auxiliary term, and the principal term is x_0; note that the auxiliary term is in this case the auxiliary proposition too, while the principal term is not a proposition of the rule occurrence; the set of the auxiliary terms of the lowermost \exists-R is: $\{A_{\alpha\rightarrow 0} y_0 (\text{maximal}), A_{\alpha\rightarrow 0} y_0\}$; the principal term is u_0; the auxiliary and principal propositions of the rule occurrence are respectively $\exists y_0 (x_0) \land A_{\alpha\rightarrow 0} y_0$ and $\exists u_0 (\exists y_0 (x_0) \land u_0)$; the set of the auxiliary terms of the \land-R occurrence is: $\{A_{\alpha\rightarrow 0} y_0, A_{\alpha\rightarrow 0} y_0, \exists y_0 (x_0), x_0, \exists (\alpha\rightarrow 0)(\alpha\rightarrow 0) \lambda x_0 x_0\}$; the set of the principal terms is: $\{A_{\alpha\rightarrow 0} y_0, A_{\alpha\rightarrow 0} y_0, \exists y_0 (x_0), x_0, \exists (\alpha\rightarrow 0)(\alpha\rightarrow 0) \lambda x_0 x_0, \exists y_0 (x_0) \land A_{\alpha\rightarrow 0} y_0, \land A_{\alpha\rightarrow 0} y_0\}$. ♦

First, an ancestor-descendant relation among isolated formulas will be defined, that connects the propositions of the rules, and that is closer to the expression of the propositional logical inference of the proof P; then, it will defined an ancestor-descendant relation among arbitrary formulas, involving auxiliary and principal terms of the rules, which is closer to the expression of the Comp-rule inference of the proof P. The concept of critical chain will mix the two relations in order to have a selected complete representation of the inferential content of P.

The isolated formula $A_{\alpha\rightarrow 0}(B_{\alpha\rightarrow 0} C_\alpha)$ in the premise has the isolated formula $\exists y_0 A_{\alpha\rightarrow 0} (x_0)$ in the conclusion as descendant in the isolated a.d. relation; but its descendant in the term a.d. relation is $A_{\alpha\rightarrow 0} (x_0)$. The formula occurrences $B_{\alpha\rightarrow 0} C_\alpha, B_{\alpha\rightarrow 0} C_\alpha$ in the premise, all have the same x_0 occurrence in the argument of $A_{\alpha\rightarrow 0}$ in the conclusion as term descendant; they have not an isolated a.d. descendant, since they cannot be the elements of an isolated a.d. relation. Conversely, $\exists y_0 A_{\alpha\rightarrow 0} (x_0)$ in the conclusion, has no term ancestors in the premise, since the auxiliary and the principal proposition of this rule cannot be connected by a term a.d. relation. In this section we will also consider the terms $B_{\alpha\rightarrow 0}$ and x_0, despite having different types, to be connected by a kind of inference relation.
Definition 6.4. [isolated predecessor, isolated successor]
i) Let \(R \) be a rule occurrence in a \(\text{LK}_{\omega} \)-proof \(P \); then:
 - i) Any auxiliary proposition of \(R \) in a premise is an isolated predecessor of the corresponding principal proposition of \(R \), which is its isolated successor;
 - ii) Any isolated formula occurrence in a premise, that is not an \(R \)-auxiliary proposition, is an isolated predecessor of the isolated formula occurrence in the conclusion corresponding to it, which is its isolated successor; in this case predecessor and successor are occurrences of the same isolated formula.

ii) If \(R \) is a Cut-rule or a weakening rule the notion of isolated predecessor and of isolated successor are defined as in the point ii) for all the isolated formulas occurrences which are not a cut-formula or the weakening-formula.

Definition 6.5. [ancestor-descendant relation among isolated formula occurrences (Section 2.8)]
i) Two isolated formula occurrences \(A \) and \(B \) in \(P \) are linked by an ancestor-descendant relation between isolated formulas (briefly, isolated a.d. relation) if they are respectively the top and the end of a sequence of isolated formula occurrences in \(P \), mutually connected by an isolated predecessor-isolated successor relation. \(A \) is an isolated ancestor of \(B \) in \(P \), and \(B \) is an isolated descendant of \(A \) in \(P \).

ii) The isolated a.d. chain of extremes \(A, B \) in \(P \) is the mentioned sequence of isolated formula occurrences between \(A \) and \(B \). \(B \) is an integral isolated descendant of \(A \) (and \(A \) is an integral isolated ancestor of \(B \)) if no element in the chain is the proposition of a rule; in this case \(A \) and \(B \) are occurrences of the same \(o \)-typed formula.

Example 6.6. In the proof \(P \) of example 6.3 the following sequence of \(o \)-typed occurrences:

\[
\langle z_0, \exists x_\alpha(x_\alpha), \exists x_\alpha(x_\alpha) \land A_{\alpha \rightarrow \alpha} y_\alpha, \exists u_\alpha (\exists x_\alpha(x_\alpha) \land u_\alpha) \rangle
\]

is an isolated a. d. chain of extremes \(z_0 \) and \(\exists u_\alpha (\exists x_\alpha(x_\alpha) \land u_\alpha) \).

Definition 6.7. [term predecessor, term successor]
i) Let \(R \) be a rule occurrence in a \(\text{LK}_{\omega} \)-proof \(P \); then:

 - i.1) Any auxiliary term (Def. 6.1) of \(R \) in a premise is a term predecessor of a corresponding principal term of \(R \), which is its term successor, with the following specifications:
 - if \(R \) is a Comp-rule, any maximal (Definition 6.1) auxiliary term \(t_\alpha \) of \(R \) is a maximal term predecessor of the principal term \(x_\alpha \) of \(R \), which is its term successor; term predecessors of \(x_\alpha \) are all the proper sub-term occurrences in its maximal term predecessor \(t_\alpha \);
 - if \(R \) is a propositional logical rule, any pair of formula occurrences connected by a term predecessor-term successor relation, must be a pair of occurrences of the same formula, and each formula in the premise has exactly one term successor in the conclusion. Conversely, any principal term in the conclusion may have no term-predecessor in the premise; in particular, in each logical rule, the introduced logical constant occurring in the principal proposition has no term predecessors, and the principal proposition of the rule has no term predecessors. In the rules \(\land \text{-L} \) and \(\lor \text{-R} \), the maximal non isolated introduced term (Def. 6.1.i) has no term predecessors.
 - if \(R \) is a \(\lambda \)-rule, the successor of each maximal auxiliary term is the corresponding maximal principal term:
 the successor of each non maximal auxiliary term \(t \), such that no term occurrences of the form \(t \) appear in the conclusion of the rule, is the leftmost term of the corresponding maximal principal term;
 the successors of each auxiliary term \(t \) such that term occurrences of the form \(t \) appear in the conclusion of the rule, are all the occurrences of the form \(t \) in the corresponding maximal principal term;
 if to any non maximal principal term \(r \), no occurrences of the form \(r \) correspond in the maximal auxiliary term linked to it by the rule, then \(r \) has no term predecessors.

 - i.2) Any formula occurrence in a premise, that is not a \(R \)-auxiliary term, is a term predecessor of the corresponding formula occurrence in the conclusion, which is its term successor; in this case predecessors and successor are occurrences of the same formula.

ii) If \(R \) is a Cut-rule or a weakening rule in \(P \), the notion of term predecessor and of term successor are defined as in the point i.2) for all the formulas which do not occur in a cut-formula or in a weakening-formula.
Definition 6.8. [ancestor-descendant relation among term occurrences, i.e. arbitrary formula occurrences]

i) Two term occurrences $C_β$ and $F_γ$ in P are linked by an ancestor-descendant relation between terms (briefly, term a.d. relation) if they are respectively the top and the end of a sequence of formula occurrences in P, mutually connected by a term predecessor-term successor relation. $C_β$ is a term ancestor of $F_γ$ in P, and $F_γ$ is a term descendant of $C_β$ in P.

ii) The term a.d. chain of extremes $C_β, F_γ$ in P is the mentioned sequence of formula occurrences between $C_β$ and $F_γ$. $F_γ$ is an integral term descendant of $C_β$ (and $C_β$ is an integral term ancestor of $F_γ$) if no element in the chain (possibly except $F_γ$) is an auxiliary term of a rule occurrence R with R a quantifier logical rule, or a $κ$-rule deleting the $C_β$-term descendants having the same form of $C_β$; in this case $C_β$ and $F_γ$ are occurrences of the same formula. A term a.d. chain of extremes $C_β, F_γ$ is maximal in P if $C_β$ has no term predecessors and $F_γ$ has no term successors.

Example 6.9. Consider the following \lor-R rule occurrence:

$$
\frac{Y \vdash A,F \lor B}{Y \vdash A,F \lor B}
$$

the maximal non isolated introduced term of the rule is B, occurring in the principal proposition $F \lor B$, and it has no term predecessors.

Example 6.10. Consider the following proof-segment H:

$$
\begin{align*}
X & \vdash \lambda x_α(Aα \land -α) \lor Bα \land -α)Mα \lambda_1 \\
X & \vdash Aα \land -α \lor Bα \land -αMα \lambda_2
\end{align*}
$$

In λ_1 the $β$-reduction operates downwards, in λ_2 upwards. Furthermore: the auxiliary proposition of λ_1 is $\lambda x_α(Aα \land -α \lor Bα \land -α)Mα$, which is the maximal auxiliary term too; the principal proposition of λ_1 is $Aα \land -α \lor Bα \land -αMα$ which is the maximal principal term too. The term successors of the λ_1-auxiliary term $Mα$ in the λ_1-premise are both the occurrences of $Mα$ in the conclusion; the λ_1-auxiliary terms $\lambda x_α(Aα \land -α \lor Bα \land -α)$, $Aα \land -α$, $Bα \land -α$, $xα$ are deleted by the rule and their term successor is the outermost term $\lor α$ of the corresponding λ_1-maximal principal term. The maximal auxiliary term of λ_2 is $Bα \land -αMα$ and its term successor is the λ_2-maximal principal term $\lambda yα(Bα \land -α)Mα$; the non maximal λ_2-principal terms $\lambda yα(Bα \land -α)$, $Bα \land -α$ and $yα$, introduced by the rule, have no term predecessors; the term predecessors of the non maximal λ_2-principal terms $Bα \land -αMα$ in the conclusion are, respectively, the corresponding occurrences of $Bα \land -αMα$ in the premise. Both occurrences of $Mα$ in the root are integral descendants of the $Mα$-occurrence in the λ_1-premise. Moreover: $(Mα, Mα, Mα)$, where all the considered $Mα$-occurrences are the leftmost in the respective sequents, and $(\lambda xα(Aα \land -α \lor Bα \land -α), \lor α, \lor α, \lor α)$, are term a.d. chains in H.

Example 6.11. Consider the following proof P:

$$
\begin{align*}
\frac{\exists w(α) \land -α}{\exists w(α) \land -α} & \exists -R \\
\exists w(α) \land -α, \exists w(α) \land -α & \exists -R
\end{align*}
$$

j) the following sequences of formula occurrences are term a.d. chains in P:

$$(\exists w(α) \land -α, w(α) \land -α, h_0)$$

starting from the succedent of the leftmost axiom; it is a maximal chain;

$$(\exists w(α) \land -α, w(α) \land -α, h_0)$$

starting from the outermost term of the succedent of the rightmost axiom; it is a maximal chain;

$$(\exists w(α) \land -α, w(α) \land -α, h_0)$$

starting from the outermost term of the principal proposition of the second $\exists -R$ downwards; it is a maximal chain;

$$(\exists w(α) \land -α, w(α) \land -α, h_0)$$

starting from the principal proposition (which is obviously the maximal principal term too) of the $\exists -L$ rule; it is a maximal chain since the principal proposition of a logical rule does not have term predecessors.

17
Note that: the occurrence of $A_{\omega \rightarrow \alpha}$ in the root is an integral term-descendant of the occurrence of $A_{\omega \rightarrow \alpha}$ in the antecedent of the rightmost axiom; in a term a.d. chain the type is not preserved, and this is essentially due to Comp-rules action.

jj) the following are isolated a.d. chains in P:
\[
\langle \exists x_{\eta}(x_0), \exists x_{\eta}(x_0) \wedge \exists x_{\eta}(x_0), \exists x_{\eta}(x_0) \wedge u_0, \exists W(x_0) \rightarrow \omega \exists x_{\eta}(x_0) \wedge u_0, \exists x_{\eta}(x_0) \wedge u_0 \rangle
\]
\[
\langle \exists x_{\eta}(x_0) \wedge u_0, \exists x_{\eta}(x_0) \wedge u_0, \exists x_{\eta}(x_0) \wedge u_0, \forall h_0(h_0) \rangle
\]
starting from the succedent of the leftmost axiom and ending at the leftmost isolated formula in the root; this cannot also be a term a.d. chain.

\[
\langle A_{\omega \rightarrow \alpha} \eta \alpha, A_{\omega \rightarrow \alpha} \eta \alpha, A_{\omega \rightarrow \alpha} \eta \alpha, A_{\omega \rightarrow \alpha} \eta \alpha \rangle
\]
starting from the occurrence of $A_{\omega \rightarrow \alpha} \eta \alpha$ in the antecedent of the rightmost axiom; this is also a term a.d. chain in P.

In order to define the notion of critical chain, a distinction between propositional inferences has to be done: to include in a critical chain only the logical propositional inference which is the farthest from weakening rules, i.e. having the uppermost ancestors of its auxiliary propositions introduced by axioms and not by weakenings.

Proposition 6.12. Let \mathcal{R} be an occurrence of a rule with $\mathcal{R} \in \{ \vee \rightarrow R, \wedge \rightarrow L, \rightarrow R, \neg \rightarrow L \}$ in a cut-free $\text{LK}_{\omega \rightarrow \alpha}$-proof P of a sequent S, and let F be the principal proposition of \mathcal{R}. Let the sequent S', obtained from S by deleting F, be not $\text{LK}_{\omega \rightarrow \alpha}$-provable. Then F has in P at least two uppermost isolated ancestors occurring in two axioms, if \mathcal{R} introduces a binary connective, or one uppermost isolated ancestor occurring in one axiom, if \mathcal{R} introduces a monadic connective.

Proof: For example let \mathcal{R} have this form:

\[
A, \Gamma \vdash \Delta \quad B, \Theta \vdash \Omega \quad \vdash \rightarrow L
\]

It is straightforward to show that if all the uppermost isolated ancestors of one of the auxiliary propositions A, B are introduced by weakenings, then a sub-sequent of $\Theta, \Gamma \vdash \Delta, \Omega$ would be provable, which is a contradiction.

Conversely, it is possible to produce several examples which show that the thesis of Proposition 6.12 cannot hold for the logical propositional rules $\vee \rightarrow R, \wedge \rightarrow L, \rightarrow R, \neg \rightarrow L$. For $\vee \rightarrow R, \wedge \rightarrow L$, the simplest example is the one where the premise is a logical axiom; for $\rightarrow R$, an example is the one where a logical axiom is the premise of a weakening introducing a left auxiliary proposition of a $\rightarrow R$ applied to its succedent. Note that the essence of the distinction is the affinity with the weakening rule.

Definition 6.13. Let $\vee \rightarrow L, \wedge \rightarrow L, \rightarrow R, \neg \rightarrow L$ be called the **strong propositional rules** and $\vee \rightarrow R, \wedge \rightarrow L, \rightarrow R$ the **weak** ones. In an isolated a.d. chain in a proof P, B is called a **strong isolated descendant** of A if no element between A and B in the chain (possibly except A) is the principal proposition of a weak propositional rule. B is a **weak isolated descendant of A** otherwise.

At this point all the ingredients are ready for the definition of the following abstract deduction structure in an $\text{LK}_{\omega \rightarrow \alpha}$-proof:

Definition 6.14. [critical chain] Let P be a fixed $\text{LK}_{\omega \rightarrow \alpha}$-proof tree. A **critical chain** in P is a Comp-ADS (Definition 3.1) T with the following properties:

i) Consider T as the sequence of ordered pairs $\langle (A^1, B^1), \ldots, (A^m, B^m) \rangle$ (Def. 3.1.i.2), with (A^i, B^i) occurring in the element \mathcal{R}_i of the set \mathcal{R} of Comp-rule occurrences $\{ \mathcal{R}_1, \ldots, \mathcal{R}_m \}$, $m \geq 1$ (Def. 3.1.i.1);

ii) For each (A^i, B^i), A^i is a maximal auxiliary term of a Comp-rule occurrence in P, and B^i is the principal term (Def. 6.1) which is the successor (Def. 6.7) of A^i;

iii) (A^1, B^1) is called the initial pair of the chain, and the axiom A^1 of the chain has the following property: no term ancestor (Def. 6.8) of A^1 occurs either in a principal proposition (Def. 2.9) F of a Comp-rule occurrence in P or in a strong isolated descendant (Def. 6.13) of it;

iv) If $(A^1, B^1), (A^{i+1}, B^{i+1})$ are consecutive pairs, one among the following conditions holds:

iv.1) B^i is a term ancestor of a sub-term of A^{i+1} through a term a.d. chain (Def. 6.8) in which no element different from B^i is a principal term (Def. 6.1) of a Comp-rule occurrence;

iv.2) B^i occurs as sub-term in A^{i+1};

iv.3) A^{i+1} occurs either in the principal proposition (Def. 2.9) F of the Comp-rule occurrence in which B^i is a principal term (Def. 6.1) or in a strong isolated descendant (Def. 6.13) of it;
v) The pair \((A^m, B^m)\) is called the end-pair of the chain and \(B^m\) doesn’t have any term descendant (Def. 6.8) which is sub-term of a maximal auxiliary term of a Comp-rule. Since \(B^m\) is a bound variable occurrence, it has an integral term descendant either in the root of \(P\), or in a cut formula.

vi) If \(T\) is a critical chain in \(P\), a critical sub-chain of \(T\) (briefly, a sub-chain of \(T\)) is any sub-sequence of \(T\) which is a critical chain in \(P\).

\[\square\]

Remark 6.15. In the definition above the crucial point is iv), and it must be noted that: in iv.1), iv.2) the link between \(B^m\) and \(A^{m+1}\) is standardly given by a term a.d. chain (Def. 6.8), while in iv.3) the link may be provided by an isolated a.d. chain (Def. 6.5) including strong propositional inferences.

\[\square\]

Proposition 6.16. Definition 6.14 can be formally translated into the language of Primitive Recursive Arithmetic PRA, and then in that of Robinson’s Arithmetic \(Q\), so that the critical chain ADS’s can be selected by a formal choice criterion (Def. 3.2) \(F\) and produce to the kind (Def. 3.3) \(Kr\) of the critical chains.

\[\square\]

Proof: An examination of Definition 6.14 shows that, given \(P\), it describes some further recursive specific properties of the sequences \(R\) and \(D\), which by hypothesis already satisfy the Comp ADS properties, that can be expressed by two \(Δ_0\)-formulas \(G(\#P, \#R)\) and \(E(\#P, \#R, \# D)\) as in the definition of choice criterion (Def. 3.2) is required. Thus, a formula \(F(\#P, x)\) having the form of a choice criterion can be constructed in the \(Q\)-language as a translation of Definition 6.14. Moreover, since the points of Definition 6.14 can be easily transformed into the steps of a recursive procedure, if \(∃yΦ(\#P, \#R, y)\) (see Def. 3.2) is true in the standard model of \(Q\), an effective procedure is definable that having \(P\) and \(R\) as input gives as output a finite set \(\{D_k\}\) of critical chains in \(P\) extracted from \(R\). Following Def. 3.3, we call the kind \(Kr\) of the critical chain ADS’s the \(Q\)-equivalence class of \(F(\#P, x)\).

\[\square\]

Example 6.17. Let us consider the following proof H:

\[
\begin{align*}
\frac{A_{0\rightarrow(a\rightarrow)B_0C_0} \vdash A_{0\rightarrow(a\rightarrow)B_0C_0}}{A_{0\rightarrow(a\rightarrow)B_0C_0} \vdash ∃y_{0\rightarrow(a\rightarrow)B_0C_0}[y_{0\rightarrow(a\rightarrow)B_0C_0}] \vdash ∃R} \\
\frac{A_{0\rightarrow(a\rightarrow)B_0C_0} \vdash ∃z_{0\rightarrow(a\rightarrow)}[z_{0\rightarrow(a\rightarrow)C_0}] \vdash ∃R} {F(A_{0\rightarrow(a\rightarrow)B_0C_0} \vdash ∃z_{0\rightarrow(a\rightarrow)}[z_{0\rightarrow(a\rightarrow)C_0}] \vdash ∃R} \\
\frac{F(A_{0\rightarrow(a\rightarrow)B_0C_0} \vdash ∃z_{0\rightarrow(a\rightarrow)}[z_{0\rightarrow(a\rightarrow)C_0}] \vdash ∃R)}{∀x_0, ∃w_0[∀x_0, ∃w_0] \vdash ∃R}
\end{align*}
\]

The following \(C\) is a critical chain in \(H:\)

\(C:\{A_{0\rightarrow(a\rightarrow)}, y_{0\rightarrow(a\rightarrow)}, B_0z_{0\rightarrow(a\rightarrow)}, ∃z_{0\rightarrow(a\rightarrow)}[z_{0\rightarrow(a\rightarrow)C_0}], w_0, (A_{0\rightarrow(a\rightarrow)B_0C_0}, x_0)\}\)

the conditions of Definition 6.14 that provide the links between the pairs in \(C\) are, respectively, iv.2), iv.1), iv.3); the strong propositional inference that contributes to \(C\) is: ∃-L; C-axiom: \(A_{0\rightarrow(a\rightarrow)}\); C-theorem: \(A_{0\rightarrow(a\rightarrow)B_0C_0}\);

\(\text{Comp-measure}(C) = 4; \text{inferential type}(C) = (a → (a → a)) → a.\) Observe that the weak propositional rule ∃-R does not break the critical chain, since the link between the second and the third pair of the chain is given by condition iv.1).

\[\square\]

Example 6.18. Consider the following proof P:

\[
\begin{align*}
\frac{z_0 \vdash z_0}{z_0 \vdash ∃x_0(x_0)} & \vdash A_{0\rightarrow a}y_0 \vdash A_{0\rightarrow a}y_0} \vdash ∃R} \\
\frac{A_{0\rightarrow a}y_0, z_0 \vdash ∃x_0(x_0) \land A_{0\rightarrow a}y_0} \vdash ∃R} \\
\frac{A_{0\rightarrow a}y_0, z_0 \vdash ∃x_0(x_0) \land u_0} {A_{0\rightarrow a}y_0, z_0 \vdash ∃R} \\
\frac{A_{0\rightarrow a}y_0, z_0 \vdash ∃w_{(a\rightarrow a)}[w_{(a\rightarrow a)} \vdash A_{0\rightarrow a}y_0 \vdash A_{0\rightarrow a}y_0] \vdash ∃R} {∀h_0(∀h_0)} \vdash ∃R} \\
\frac{∀h_0(∀h_0, A_{0\rightarrow a}y_0, z_0) \vdash ∃R} {∀h_0(∀h_0, A_{0\rightarrow a}y_0, z_0) \vdash ∃R} \\
\frac{∀h_0(∀h_0, A_{0\rightarrow a}y_0, z_0) \vdash ∃R} {∀h_0(∀h_0, A_{0\rightarrow a}y_0, z_0) \vdash ∃R}
\end{align*}
\]

The following \(C_1\) and \(C_2\) are critical chains in \(P:\)
7. The inferential algebra $\text{Inf-}\mathcal{A}$ based on the critical chains

Having defined in Section 6 the ADS kind Kr of the critical chains, the task of this Section is to construct a class $\text{Inf-}\mathcal{A}$ of inferential algebras based on Kr that provides the formal environment for the proof of Main Theorem 4.4. The definition of $\text{Inf-}\mathcal{A}$ will be syntactic. Recalling Definition 3.9, first the domains of the algebra and the abstraction function (operation)\Rightarrow of $\text{Inf-}\mathcal{A}$ are defined, then the application function (operation) \ast of $\text{Inf-}\mathcal{A}$ is introduced. Without any loss of generality, in the construction of the domains $\{\text{KrD}_\alpha\}$ of $\text{Inf-}\mathcal{A}$, the end pair of the main critical chain of each tree occurs in an \exists-R Comp-rule. The alternative choice of a \forall-L Comp-rule would produce isomorphic inferential algebras. However, the preference for the rule \exists-R can be motivated by some developments that are shown in Section 10.

7.1. The domains $\{\text{KrD}_\alpha\}$ and the abstraction operation \Rightarrow of $\text{Inf-}\mathcal{A}$

In the following we fix a canonical recursive bijection $\varepsilon_{(\alpha,\beta)}: \{A_\alpha : A_\alpha \text{ closed formula}\} \times \{A_\beta : A_\beta \text{ closed formula}\} \rightarrow \{A_{\alpha-\beta} : A_{\alpha-\beta} \text{ closed formula}\}$. However, our results do not depend on the choice of ε, and may take $\text{Inf-}\mathcal{A}$ to stand for the class of algebras obtained by varying ε. Definition 7.1 presents the basis case domains of $\text{Inf-}\mathcal{A}$, i.e. those including only trees of inferential types o or i, and Lemma 7.2 constructively presents the abstraction operation \Rightarrow of $\text{Inf-}\mathcal{A}$, i.e. it shows how the trees of higher Kr-inferential types are produced starting from the trees of elementary Kr-inferential types.

Definition 7.1. The inferential domains KrD_o and KrD_i of the inferential algebra $\text{Inf-}\mathcal{A}$ (Def. 3.9) based on the Comp-ADS kind Kr are defined as follows:

i) KrD_o is the set of $\text{LK}_{\alpha\theta}$-potential proof trees P such that: P has exactly one main critical chain T of inferential type o; the Comp-rule including the main critical chain is an \exists-R rule; the T-theorem (coinciding with the T-axiom, since T has length 1) is any closed o-typed $\text{LK}_{\alpha\theta}$-formula F_0; F_0 has all its uppermost term ancestors in P.

9An example is the following: let $(\#G_{\alpha\beta})_{\alpha\beta}\in\mathbb{N}$ be the sequence of the G"odel-numbers of the codomain formulas and $(\#F_\alpha)_{\alpha\in\mathbb{N}}, (\#G_{\alpha\beta})_{\alpha\beta\in\mathbb{N}}$ be the sequences of the G"odel-numbers of the domain factor formulas, ordered by the relation $< \in \mathbb{N}$; let the sequence $(\#F_{\alpha\beta}, \#G_{\alpha\beta})_{\alpha\beta\in\mathbb{N}}$ be ordered by the lexicographic order induced by the previous orders. Then, consider the orders induced in the corresponding set of formulas and define $\{A_\alpha \beta : [F_\alpha, G_\alpha]\}$ be the element of the ordered codomain $\{A_\alpha \beta : A_\alpha \beta \text{ closed formula}\}$ having the same place index of $\{F_\alpha, G_\alpha\}$ in the ordered domain.

10For a first idea of the construction, we suggest to concentrate on some cases presented at STEP 1 of the proof of Lemma 7.2 and, possibly, imagine the trees of KrD_o and KrD_i, in the simplest forms, which are the ones explicitly indicated in Def. 8.1 for the sub-algebra $\text{Inf-}\mathcal{A}'$. As to the definition of the application operation \ast of $\text{Inf-}\mathcal{A}$, it is essentially a corollary of the definition of the abstraction operation \Rightarrow: then, sub-section 7.2 can be read as a corollary of the proof of Lemma 7.2.
The segments
\begin{enumerate}[(a)]
\item G
\item H
\end{enumerate}
and the set of the axioms introducing the theorem of the main critical chain having the theorem of the main critical chain $\gamma \rightarrow \delta$ with $0 < h(\alpha) = 1$ and thus in any $P \in \mathcal{K}_{\alpha}$ also critical chains of inferential type i may occur.

Lemma 7.2. (Main Lemma) Consider the trees of the domains \mathcal{K}_{α} and \mathcal{K}_{β} defined in Definition 7.1. Then, for each compound type $\gamma \rightarrow \delta$ it is possible to construct an inferential domain $\mathcal{K}_{\gamma \rightarrow \delta}$ of \mathcal{K}_ϕ-modular trees of inferential type $\gamma \rightarrow \delta$, such that its elements are abstraction trees $Q^\gamma \Rightarrow Q^\delta$, with $Q^\gamma \in \mathcal{K}_{\gamma}$, $Q^\delta \in \mathcal{K}_{\delta}$, having the following properties:

\begin{enumerate}[(j)]
\item $Q^\gamma \Rightarrow Q^\delta$ has exactly one main critical chain T of inferential type $\gamma \rightarrow \delta$.
\item The theorem G_δ of \mathcal{K} is of the form $\text{E}_{\gamma \rightarrow \delta} C_\gamma$ with $\text{E}_{\gamma \rightarrow \delta} \equiv g(\gamma \delta)(A_\gamma, B_\delta)$, such that A_γ, B_δ are the canonical components (Definition 3.9.ii) of the theorems of the main critical chains G_γ of Q^γ and N of Q^δ, and C_γ is the γ-typed syntax parameter having as index the Gödel-number of the pair (Q^γ, Q^δ). The occurrence of C_γ in G_δ is called the memory parameter of $Q^\gamma \Rightarrow Q^\delta$. The proof-segment containing T and having the main Comp-rule as end rule is called the main module of $Q^\gamma \Rightarrow Q^\delta$.
\item Each uppermost term ancestor of the theorem G_δ of \mathcal{T} occurs in a potential axiom $\Gamma \vdash \Delta$ or in a logical axiom $A \vdash \Delta$ of $Q^\gamma \Rightarrow Q^\delta$, and it must be an integral term ancestor. The same property holds for the memory parameter C_γ of $Q^\gamma \Rightarrow Q^\delta$.
\end{enumerate}

Proof of Main Lemma: The construction of $Q^\gamma \Rightarrow Q^\delta$ is done through the following steps:

STEP 1: First the main module $Q^\gamma \Rightarrow Q^\delta$ is constructed by induction on the complexity of types, and it is proven that $P^\gamma \rightarrow Q^\delta$ already has the properties (j)-(jjj) stated by the thesis. The construction is such that the Comp-rule including the end pair of the main critical chain is an $\exists \mathcal{R}$ rule.

Select the segment H^γ of Q^γ, (resp. H^δ of Q^δ) having as end-rule the Comp-rule occurrence in which the theorem of the main critical chain G_γ (resp. \mathcal{N}_γ) occurs; in H^γ (resp in H^δ), consider the premise of the Comp-rule $\exists \mathcal{R}$ having the theorem of the main critical chain G_γ (resp. \mathcal{N}_γ) as maximal auxiliary term; by construction this premise has the form:

$$X \vdash Y, F[\ldots, A_n, \ldots] \text{ for } H^\gamma \quad \text{and} \quad U \vdash V, N[\ldots, B_n, \ldots] \text{ for } H^\delta$$

and the set of the axioms introducing the γ-theorem A_γ will be of the form either \(\Gamma^m \vdash A_\gamma : n = 1, \ldots, t\) if γ is o or \(\Gamma^m \vdash A_\gamma : m = 1, \ldots, k\) if γ is i; analogously for the \mathcal{N}-theorem B_δ.

\begin{enumerate}[a)]
\item The segments H^γ, H^δ are the main modules P^γ, P^δ for the basis cases given by primitive types (Def. 7.1).
\item The main modules $P^\gamma \Rightarrow Q^\delta$ for the four compound type basis cases $\gamma \rightarrow \delta \in \{0 \rightarrow o, i \rightarrow o, o \rightarrow i, i \rightarrow i\}$ are the following:
\end{enumerate}

\begin{enumerate}[a)]
\item $P^\gamma \Rightarrow Q^\delta$, i.e. $\gamma \equiv o, \delta \equiv o$:
\begin{align*}
\{\Gamma^m \vdash A_\gamma : n = 1, \ldots, t\} & \quad \{\Gamma^r \vdash E_\alpha \rightarrow o Y_\gamma : r = 1, \ldots, k\} \\
\Pi_1 & \quad \Pi_2 \\
X \vdash Y, F[\ldots, A_n, \ldots] & \quad U \vdash V, N[\ldots, E_\gamma \rightarrow o Y_\gamma, \ldots] \\
X \vdash Y, F[\ldots, A_n, \ldots] \cup h_\gamma & \vdash^\exists \mathcal{R} \quad U \vdash V, N[\ldots, E_\gamma \rightarrow o Y_\gamma, \ldots] \cup b_\delta \quad \vdash^\exists \mathcal{R} \\
X, U \vdash Y, V, (\exists \phi(F[\ldots, x_\gamma, \ldots] \cup h_\gamma)) & \quad (N[\ldots, E_\gamma \rightarrow o Y_\gamma, \ldots] \cup b_\delta) \quad \vdash^\exists \mathcal{R} \\
X, U \vdash Y, V, \exists \phi((\exists \phi(F[\ldots, x_\gamma, \ldots] \cup h_\gamma)) \cap (N[\ldots, U_\gamma, \ldots] \cup h_\gamma)) & \quad (N[\ldots, U_\gamma, \ldots] \cup b_\delta) \quad \vdash^\exists \mathcal{R}
\end{align*}
\end{enumerate}

where: Π_1 is the proof-segment above the main Comp-rule in H^γ. The proof-segment Π_2 is obtained by replacing the closed B_δ with $E_\alpha \rightarrow o Y_\gamma$ in each axiom $\Gamma^r \vdash B_\delta, r = 1, \ldots, k$, in the proof-segment above the main Comp-rule
in H^8; through the hypotheses on Q^8, which belongs to K^D_δ, such replacement is possible. $E_{0\to0}$ is the closed formula $g_{(0,0)}(A_0, B_0)$ unambiguously determined by the recursive bijection $g_{(0,0)}$, and v_0 is the o-typed syntactic parameter having as index the Gödel-number of the pair (Q^8, Q^8): it is the memory parameter. h_0 and b_0 are suitable non logical constants so that the index of the constant h_0 is the Gödel-number of Q^8, the index of the constant b_0 is the Gödel-number of Q^8; the two \lor-occurrences have been added in order to break possible new critical chain links of the form $iv.3)$-Def.6.14 between some Comp-rule with maximal auxiliary term of type i in Π_1, Π_2, and the lower part of $P^{o\to0}$. The main critical chain of $P^{o\to0}$ is: $T \equiv \langle (A_0, x_0), (E_{0\to0}, y_0) \rangle$ with T-axiom A_0, T-theorem $E_{0\to0}$, and inferential type $o \to o$; the link between the pairs in T is given by the second case of point iv.3) of Definition 6.14.

$P^{i\to i}$, i.e. $\gamma \equiv i, \delta \equiv i$:

\[
\begin{align*}
\{F^m_{i\to0} A_i &\vdash F^m_{i\to0} A_i : m = 1, ... , t \} \quad \{F^m_{i\to0} (E^i_{i\to0} v_i) &\vdash F^m_{i\to0} (E^i_{i\to0} v_i) : s = 1, ... , k \} \\
& \quad \Pi_1 \quad \Pi_2 \\
X &\vdash Y, F[... A_i, ...] \not\exists R \\
&\quad \not\exists R \\
X &\vdash Y, \exists x F[... x_i, ...] \not\exists R \\
&\quad \not\exists R \\
X, U &\vdash Y, V, \exists x F[... x_i, ...] \not\exists R \\
&\quad \not\exists R \\
\end{align*}
\]

where: Π_1 is the proof-segment above the main Comp-rule in H^8. The proof-segment Π_2 is obtained by replacing the closed B_i with $E_{i\to0} v_i$ in each axiom $F^m_{i\to0} B_i \vdash F^m_{i\to0} B_i, s = 1, ... , k$, in the proof-segment above the main Comp-rule in H^8, through the hypotheses on Q^8, which belongs to K^D_δ, such replacement is possible. $E_{i\to0}$ is the closed $g_{(i,0)}(A_i, B_i)$ unambiguously determined by the recursive bijection $g_{(i,0)}$, and v_i is the i-typed syntactic parameter having as index the Gödel-number of the pair (Q^i, Q^8): it is the memory parameter. Note that no Comp-rule may occur in the segments Π_1, Π_2, by definition of the trees of K^D_δ. The main critical chain of $P^{i\to i}$ is: $T \equiv \langle (A_i, x_i), (E_{i\to0}, y_i, u_i) \rangle$ with T-axiom A_i, T-theorem $E_{i\to0}$, and inferential type $i \to i$; the link between the pairs in T is given by the second case of point iv.3) of Definition 6.14.

$P^{o\to0}$, i.e. $\gamma \equiv o, \delta \equiv o$:

\[
\begin{align*}
\{F^m_{i\to0} A_i &\vdash F^m_{i\to0} A_i : m = 1, ... , t \} \quad \{\Gamma^i &\vdash E_{i\to0} w_i : r = 1, ... , k \} \\
& \quad \Pi_1 \quad \Pi_2 \\
X &\vdash Y, F[... A_i, ...] \not\exists R \\
&\quad \not\exists R \\
X &\vdash Y, \exists x F[... x_i, ...] \not\exists R \\
&\quad \not\exists R \\
X, U &\vdash Y, V, \exists x F[... x_i, ...] \not\exists R \\
&\quad \not\exists R \\
\end{align*}
\]

where: Π_1 is the proof-segment above the main Comp-rule in H^8. The proof-segment Π_2 is obtained by replacing the closed B_i with $E_{i\to0} w_i$ in each axiom $\Gamma^i \vdash B_i, r = 1, ... , k$, in the proof-segment above the main Comp-rule in H^8, through the hypotheses on Q^8, which belongs to K^D_δ, such replacement is possible. $E_{i\to0}$ is the closed formula $g_{(i,0)}(A_i, B_i)$ unambiguously determined by the recursive bijection $g_{(i,0)}$, and w_i is the i-typed syntactic parameter having as index the Gödel-number of the pair (Q^i, Q^8): it is the memory parameter. d_0 is a suitable non logical constant having as index the Gödel-number of Q^8; the \lor-occurrence has been added in order to break possible new critical chain links of the form $iv.3)$-Def.6.14 between some Comp-rule with maximal auxiliary term of type i in Π_2, and the lower part of $P^{o\to0}$. Note that no Comp-rule may occur in the segments Π_1, Π_2, by definition of the trees of K^D_δ. The main critical chain of $P^{o\to0}$ is: $T \equiv \langle (A_i, x_i), (E_{i\to0}, v_i, u_i) \rangle$ with T-axiom A_i, T-theorem $E_{i\to0}$, and inferential type $i \to o$; the link between the pairs in T is given by the second case of point iv.3) of Definition 6.14.

$P^{o\to o}$, i.e. $\gamma \equiv o, \delta \equiv o$:

\[
\begin{align*}
\{\Gamma^i &\vdash A_0 : n = 1, ... , t \} \quad \{F^m_{i\to0} E_{i\to0} v_0 &\vdash F^m_{i\to0} E_{i\to0} v_0 : m = 1, ... , r \} \\
& \quad \Pi_1 \quad \Pi_2 \\
X &\vdash Y, F[... A_0, ...] \not\exists R \\
&\quad \not\exists R \\
X &\vdash Y, F[... A_0, ...] \not\exists R \\
&\quad \not\exists R \\
X, U &\vdash Y, V, F[... x_0, ...] \not\exists R \\
&\quad \not\exists R \\
\end{align*}
\]

where: Π_1 is the proof-segment above the main Comp-rule in H^8. The proof-segment Π_2 is obtained by replacing the closed B_i with $E_{i\to0} v_0$ in each axiom $\Gamma^i \vdash B_i, m = 1, ... , r$, in the proof-segment above the main Comp-rule in H^8, through the hypotheses on Q^8, which belongs to K^D_δ, such replacement is possible. $E_{i\to0}$ is the closed
formula $g_{i(a,i)}(A_n, B_i)$ unambiguously determined by the recursive bijection $g_{i(a,i)}$, and z_o is the o-typed syntactic parameter having as index the Gödel-number of the pair (Q^f, Q^s): it is the memory parameter. f_o is a suitable non logical constant having as index the Gödel-number of Q^s; the \forall-occurrence on the left has been added in order to break possible new critical chain links of the form iv.3)-Def.6.14 between some Comp-rule with maximal auxiliary term of type i in Π_1 and the lower part of $P^{\forall-i}$. Note that no Comp-rule may occur in the segments Π_2, by definition of the trees of \mathcal{S}^D_i. The main critical chain of $P^{\forall-i}$ is $T \equiv \langle (A_o, x_o), (E_{o-i}, \pi_o, _i, u_i) \rangle$ with T-axiom A_o, T-theorem $E_{o-i} = \pi_o$ and inferential type $o \rightarrow i$; the link between the pairs in T is given by the second case of point iv.3) of Definition 6.14.

Thus, properties j), jj), jjj) hold for the main module $P^{\forall-\delta}$ of $Q^f \Rightarrow Q^s$ in the basis cases.

c) Construction of the main module $P^{\forall-\delta}$ of $Q^f \Rightarrow Q^s$ at the compound-type induction step:

1) Suppose that δ is a compound type $\delta \equiv \pi \rightarrow \eta$ and γ an arbitrary type. The construction of $P^{\forall-\delta}$ will start from the main modules P^f of Q^f and P^s of Q^s. By induction hypothesis P^f and P^s have properties j)-jjj) of the thesis.

The following transformations will be performed on P^f:

1. Consider the auxiliary proposition (Def. 2.9) A of the end-rule \exists-R in P^f, that is the Comp-rule in which the end-pair of the main critical chain H of P^f occurs. By induction hypothesis, the H-theorem, occurring in A as maximal auxiliary term of the main Comp-rule, has the form $F_\pi \beta_\eta$ with either F_π significant leftmost component (Def. 3.8) or β_η empty if γ is a primitive type. Apply to the succedent of the P^f-root a \forall-R having A as maximal non isolated introduced term (Def. 6.1.i). Let B be the principal proposition (Def. 2.9) of such \forall-R.

2. To the root of the obtained proof-segment, apply a \exists-R having B as auxiliary proposition and F_π as maximal auxiliary term in this way. In this way, F_π becomes the axiom of a critical chain, since the \forall-R in which the uppermost F_π-term ancestor occurs as non isolated principal term, is a weak propositional inference that does not produce any critical chain link. $\exists B$ briefly indicates the principal proposition of the applied \exists-R and $\top P^f$ the obtained potential proof.

Consider now the proof P^s:

1. Let $\top P^s$ be the sub-proof of the premise of the lowermost \exists-R in P^s, that is the main Comp-rule, let C be the auxiliary proposition of such \exists-R. By induction hypothesis, the maximal auxiliary term of the rule, occurring in C, is the theorem of the main critical chain H of P^s and has the form $E_{\pi-\eta} d_\eta$, since $\delta \equiv \pi \rightarrow \eta$. The canonical component $E_{\pi-\eta}$ has been unambiguously determined at the construction of $P^{x-\eta}$ by the recursive bijection $g_{(\pi,\eta)}$, and has each its uppermost term ancestor in an axiom as an integral ancestor (Def. 6.8) which has the form $E_{\pi-\eta}$.

Moreover, by construction, such uppermost ancestor can be replaced by any term of the same type without breaking any rule constraint in P^s.

The following transformations are performed on P^s:

J) uniformly replace in $\top P^s$ the formula $E_{\pi-\eta}$ with $G_{\gamma-\delta \gamma \gamma}$, being $G_{\gamma-\delta}$ the unique closed term $\equiv g_{(\gamma,\delta)}(F_\gamma, E_{\pi-\eta})$, (recall that $\delta \equiv \pi \rightarrow \eta$) and where y_γ is the γ-typed syntactic parameter having as index the Gödel-number of the pair (Q^f, Q^s), i.e. it is the memory parameter. Then, in the proposition C, the \forall-theorem is also replaced by $G_{\gamma-\delta \gamma \gamma} \delta_\gamma \pi \gamma$. Let C' be the isolated formula produced by such transformation of C;

J) to the so transformed premise of the lowermost \exists-R in P^s, apply a \forall-R having the non logical constant h_o, which has as index the Gödel-number of Q^s, as maximal non isolated introduced term (Def. 6.1.i). Let S be the obtained sequent. Do not apply any \exists-R to S. Let $\top P^s$ be the obtained potential proof of S.

Consider now the potential proofs $\top P^f$ and $\top P^s$. Apply to them the following rules:

J) apply a \forall-R between the root of $\top P^f$ and the root of $\top P^s$, having as principal proposition $\exists B \land C^\gamma$;

I) then, apply to the conclusion of the \exists-R above, a \exists-R having $\exists B \land C^\gamma$ as auxiliary proposition and $G_{\gamma-\delta \gamma \gamma}$ as maximal auxiliary term.

$P^{\forall-\delta}$ is the obtained tree.

The main critical chain of $P^{\forall-\delta}$ is the one with axiom F_γ (see point II above) and theorem $G_{\gamma-\delta \gamma \gamma}$ (see point IV above), having inferential type $\gamma \rightarrow \delta$. $G_{\gamma-\delta \gamma \gamma}$ is the canonical component and y_γ the memory parameter. It is straightforward to see that points j)-jjj) of the thesis hold by construction for $P^{\forall-\delta}$. In particular, observe that the weak propositional rule \forall-R applied in I) and J) above breaks the production of any critical chain which could contradict the thesis. Moreover, the uniqueness of $P^{\forall-\delta}$, given the abstracted proofs, is in the fact that no ambiguity is in the choice of new parameters and constants, which are selected by the Gödel-numbers of the abstracted Q^f, Q^s.

b) The construction of $P^{\forall-\delta}$ is strictly similar to c1) and b) above in the case where γ is a compound type $\gamma \equiv \nu \rightarrow \sigma$ and δ an arbitrary type, and the same conclusions hold.

STEP 2: If in both the abstracted Q^f, Q^s, the end-rule is the main Comp-rule, then stop: $Q^f \Rightarrow Q^s$ coincides with the main module $P^{\forall-\delta}$.

Otherwise, construct the following potential proof tree $R^{(\gamma,\delta)}$:

23
\[
\begin{align*}
\frac{Q^\gamma}{X \vdash Y} & \quad \frac{Q^\delta}{W \vdash \Omega} \\
\vdash (\neg \bigwedge X) \lor \bigvee Y & \quad \bigwedge W \land (\neg \bigvee \Omega) \vdash \Rightarrow L \\
\vdash \neg((\neg \bigwedge X) \lor \bigvee Y \lor W \land (\neg \bigvee \Omega)) & \quad \neg R
\end{align*}
\]

where \(X \vdash Y \) is the root of \(Q^\gamma \) and \(W \vdash \Omega \) is the root of \(Q^\delta \).

Then \(Q^\gamma \Rightarrow Q^\delta \) is the following tree:

\[
\begin{align*}
P^{\gamma \rightarrow \delta} & \quad R^{(\gamma \delta)} \\
U \vdash W, A & \quad U \vdash W, A \land C \\
\vdash C & \quad \land R
\end{align*}
\]

where \(U \vdash W, A \) is the root of \(P^{\gamma \rightarrow \delta}, A \) is the principal proposition of the main Comp-rule, and \(\vdash C \) is the root of \(R^{(\gamma \delta)} \).

Observe that, by construction, in \(R^{(\gamma \delta)} \) critical chains with inferential types \(\gamma \) and \(\delta \) necessarily occur, but no critical chain having inferential type with height \(h \) greater than or equal to \(h(\gamma \rightarrow \delta) \) may occur. Therefore, all points j)-jjj)) of the thesis hold for the so constructed \(Q^\gamma \Rightarrow Q^\delta \).

Remark 7.3. The occurrences of \(o \)-typed constants, indexed by suitable Gödel-numbers, that are introduced by \(\lor \cdot \) rules through the construction of \(Q^\gamma \Rightarrow Q^\delta \) described above, are called memory constants. Both memory constants and memory parameters (Lemma 7.2, thesis jj)) can be replaced in the main module of \(Q^\gamma \Rightarrow Q^\delta \), after a possibly renaming of any quantified parameters in the uppermost segment of the module, with different parameters or constants of the same type, without breaking any rule constraint.

Definition 7.4. For each compound type \(\gamma \rightarrow \delta \), the inferential domains \(K^\gamma D_{\gamma \rightarrow \delta} \) and the abstraction operation \(\Rightarrow \) of the inferential algebra \(Inf\cdot A \) (Def. 3.9) based on the Comp-ADS kind \(Kr \), are given by the \(Kr \)-modular trees of the form \(Q^\gamma \Rightarrow Q^\delta \), described in the Main Lemma 7.2 starting from any pair \(Q^\gamma, Q^\delta \) of \(Kr \)-modular trees of the domains \(K^\gamma D_{\gamma}, K^\delta D_{\delta} \).

Proposition 7.5. For each pair of types \(\gamma, \delta \), the function \(\Rightarrow: K^\gamma D_{\gamma} \times K^\delta D_{\delta} \rightarrow K^\gamma D_{\gamma \rightarrow \delta} \) of the inferential algebra \(Inf\cdot A \) is a recursive bijection.

Proof: By definition of \(\Rightarrow \) the image of the function coincides with the codomain; as to the injectivity, given an arbitrary \(Q^{\gamma \rightarrow \delta} \equiv Q^\gamma \) in \(K^\gamma D_{\gamma \rightarrow \delta} \), the abstracted proofs \(Q^\gamma, Q^\delta \) can be recursively reconstructed from the information included in the memory parameters occurring in the main module of \(Q^\gamma \Rightarrow Q^\delta \); such pair of trees is unique, since the memory parameters are indexed by their Gödel-numbers.

Remark 7.6. The critical chains of the trees in the domains \(\{K^\gamma D_{\alpha}\}_{\alpha \in \text{types}} \) of \(Inf\cdot A \) have the following properties:

i) For each type \(\gamma \), each closed formula \(F_\gamma \) occurs in infinitely many different trees of the domains \(\{K^\gamma D_{\alpha}\}_{\alpha \in \text{types}} \) as the canonical component of the theorem of the main critical chain.

ii) For each type \(\gamma \), infinitely many different trees of the domains \(\{K^\gamma D_{\alpha}\}_{\alpha \in \text{types}} \) include Comp-rules having the maximal auxiliary term of type \(\gamma \).

7.2. *The application operation \(* \) of \(Inf\cdot A \)*

At this point the application operation \(* \) of the inferential algebra must be introduced.

Definition 7.7. Recalling Definition 7.4, for each pair \(\gamma, \delta \) of types, the application function \(*: K^\gamma D_{\gamma \rightarrow \delta} \times K^\gamma D_{\gamma} \rightarrow K^\delta D_{\delta} \) of the algebra \(Inf\cdot A \) (Def. 3.9) is defined as follows. Let \(Q^{\gamma \rightarrow \delta} \in K^\gamma D_{\gamma \rightarrow \delta} \) and \(Q^\gamma \in K^\gamma D_{\gamma} \), and let \(F_{\gamma \rightarrow \delta} \) and \(B_{\gamma} \) be the canonical components of the theorems of the main critical chains resp. of \(Q^{\gamma \rightarrow \delta} \) and of \(Q^\gamma \); then \(Q^{\gamma \rightarrow \delta} * Q^\gamma \) is the potential proof-tree \(H^0 \) of \(K^\delta D_{\delta} \) so chosen:

i) consider \(Q^{\gamma \rightarrow \delta} \) as \(R^\gamma \Rightarrow R^\delta \), by Proposition 7.5 both \(R^\gamma, R^\delta \) are recursively determined;

ii) consider the main module \(P^0 \) of \(R^\delta \),
ii.1) if the canonical component of $P^δ$ is $F_{γ→δ}B_γ$, then $Q^{γ→δ}→ Q$ is that element of $KrD_δ$ having the Gödel-number closest to the Gödel-number of $P^δ$ among the Gödel-numbers of the trees of $KrD_δ$ that are obtained from $P^δ$ by a replacement of memory constants and memory parameters;

otherwise:

ii.2) in $P^δ$, the canonical component $G_δ$ is replaced with $F_{γ→δ}B_γ$, obtaining a tree $M^δ$. Consider the set M of the elements of $KrD_δ$ having $F_{γ→δ}B_γ$ as the canonical component and that are identical to $M^δ$ unless the indices of some non logical constants and syntactic parameters. Then, choose as $Q^{γ→δ}→ Q'$ the element of M having the Gödel-number closest to the Gödel-number of $P^δ$.

◊

It is provable that the function $*$ is well defined and recursive.

Lemma 7.8. Let $P^δ$ be the main module of any arbitrary $R^δ ∈ KrD_δ$. Then either $P^δ$ is in $KrD_δ$ too, or a suitable replacement of memory parameters and memory constants is always possible in $P^δ$, so that the resulting tree H is in $KrD_δ$.

For the proof see Appendix A2.

Lemma 7.9. Let $R^δ$ be any element of $KrD_δ$ that coincides with its main module, having an occurrence of the closed formula $G_δ$ as the canonical component; then for each closed $δ$-typed formula $F_δ$ different from $G_δ$, a tree $H^δ$ in $KrD_δ$ exists, having $F_δ$ as the canonical component, so that $H^δ$ is obtained from $R^δ$ by uniformly replacing each term ancestor of the canonical component $G_δ$ by $F_δ$, and by suitable replacements of non logical constants and memory parameters.

For the proof see Appendix A3.

Proposition 7.10. i) Given $Q^{γ→δ} ∈ KrD_γ→δ$ and $Q^γ ∈ KrD_γ$ the function $*: KrD_γ→δ × KrD_γ → KrD_δ$ established by the previous definitions is well defined and recursive.

ii) $H^δ ≡ Q^{γ→δ} * Q^γ$ can be obtained by suitable uniform replacements of terms and syntactic parameters from the main module of the right abstracted tree $R^δ$ in $R^γ ⇒ R^δ ≡ Q^{γ→δ}$.

iii) The end-rule of $H^δ ≡ Q^{γ→δ} * Q^γ$ is its main Comp-rule i.e. $H^δ$ coincides with its main module.

Proof:

i) The function $*$ is well defined since, by Lemmas 7.8 and 7.9, the tree $Q^{γ→δ} * Q^γ$ as defined in Definition 7.7 exists in $KrD_δ$. As to the recursiveness, it can be noted that: $k ≡$ Gödel number of $P^δ$ is computable; moreover, given a natural number it is possible to recursively establish if it is a Gödel number and, if so it is, what expression it codes. Then, starting from k, both downwards and upwards alongside the ordered natural numbers, it is possible to stop at the first Gödel number of a tree having the searched features that is found; if two numbers are found, the first above k and the second below k, the smallest is chosen. The process is effective and finite, since the searched tree exists. Moreover, taking into account the specific features of the employed Gödel numbering, a bound on the size of the Gödel number of the searched tree can be given starting from the Gödel numbers of the contracted trees.

ii), iii) follow from Definition 7.7. ◊

Corollary 7.11. For each potential proof $Q^{γ→δ} ∈ KrD_γ→δ$ the function $Q^{γ→δ} → (\cdot) : KrD_γ → KrD_δ$ is a recursive function.

Definition 7.12. The class of the inferential algebras of the critical chains is $\{g, \{KrD_δ\}_{δ∈types}, →, *\}$ where g varies in the set of the canonical recursive bijections, and the domains $KrD_δ$ and the functions $→, *$ are those described by Definitions 7.4, 7.7. ◊

It must be noted that the application function $*$ of any inferential algebra $Inf¬A$ is neither surjective nor injective. In fact, in $KrD_δ$ of $Inf¬A$ infinitely many trees may exist, that have the same canonical component as the main ADS theorem, and that have the same main module unless the indices of some non logical constants and syntactic parameters. Then, fixing the types $γ, γ → δ$, a tree $H^δ$ may be obtained as the application of infinitely many pairs of trees of the form $(Q^{γ→δ}, Q^γ)$. Also observe that infinitely many elements of $\{KrD_δ\}_{δ∈types}$ cannot be the result of any application operation: in this class are all the trees having the canonical component which is not an application between terms.
8. Proof of the Main Theorem: the sub-algebra $\text{Inf} - \mathcal{P}$ of the inferential algebra $\text{Inf} - \mathcal{A}$

At the end of Section 7 it is remarked that the defined application operation \ast of $\text{Inf} - \mathcal{A}$ is not injective. Thus, in this Section, a sub-algebra $\text{Inf} - \mathcal{P}$ (Def 8.1) of $\text{Inf} - \mathcal{A}$ is introduced, where \ast is injective and has much more regularity properties (Lemma 8.2). Then, an inferential interpretation $\text{Kr} \mathcal{V}$, sending typed formulas into elements of $\text{Inf} - \mathcal{P}$, can be defined (Def 8.4), where $\text{Kr} \mathcal{V}$ is functionally sound (Theorem 8.5), so that all the ingredients to prove the main Theorem 4.4 are given (Corollary 8.6).

Definition 8.1. Given $\text{Inf} - \mathcal{A} \equiv \langle g, \{\text{Kr} D_\alpha\}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle$, the sub-domains $\{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}$, $\text{Kr} W_\alpha \subset \text{Kr} D_\alpha$ for each α, are so constructed:

i) the elements of $\text{Kr} D_\alpha$ that belong to $\text{Kr} W_\alpha$ have the following form:

\[
\begin{align*}
\Gamma \vdash B_\alpha & \\
\Gamma \vdash \exists x_\alpha(x_\alpha) & \exists - \text{R}
\end{align*}
\]

where Γ is the o-typed syntactic parameter having as index the Gödel-number of B_α;

ii) the elements of $\text{Kr} D_\alpha$ that belong to $\text{Kr} W_\alpha$ have the following form:

\[
\begin{align*}
F_{i \rightarrow o} A_i \vdash F_{i \rightarrow o} A_i & \\
F_{i \rightarrow o} \vdash \exists x F_{i \rightarrow o} x & \exists - \text{R}
\end{align*}
\]

where $F_{i \rightarrow o}$ is the i-typed non logical constant having as index the Gödel-number of A_i;

iii) for each compound type $\gamma \rightarrow \delta$ the sub-domain $\text{Kr} W_{\gamma \rightarrow \delta}$ is recursively constructed starting from $\text{Kr} W_\gamma$, $\text{Kr} W_\delta$ through the same procedures which have constructed the domains $\{\text{Kr} D_\alpha\}_{\alpha \in \text{types}}$ of $\text{Inf} - \mathcal{A}$, i.e. through the same abstraction operation \Rightarrow. We set $\text{Inf} - \mathcal{P} \equiv \langle g, \{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle$.

It must be noted that the sub-domain $\text{Kr} W_\alpha$ is very small with respect to the domain $\text{Kr} D_\alpha$. To each tree P in $\text{Kr} W_\alpha$ infinitely many trees correspond in $\text{Kr} D_\alpha$ having P as sub-proof.

The following Lemma establishes that $\text{Inf} - \mathcal{P} \equiv \langle g, \{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle$ is a sub-algebra of $\text{Inf} - \mathcal{A}$ having relevant properties of trees in the sub-domains $\{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}$.

Lemma 8.2. Let $\text{Inf} - \mathcal{P} \equiv \langle g, \{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle$ where $\{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}$ are the sub-domains defined in Definition 8.1. Then:

i) Any element of $\text{Kr} W_{\gamma \rightarrow \delta}$ is the abstraction in $\text{Inf} - \mathcal{A}$ of a unique pair of trees belonging resp. to $\text{Kr} W_\gamma$ and $\text{Kr} W_\delta$.

ii) For each type γ, for each closed formula F_γ, exactly one potential proof tree H in $\text{Kr} W_\gamma$ exists so that F_γ is the canonical component of the theorem of the main critical chain of H.

iii) If a tree Q belonging to $\text{Kr} D_\alpha$ coincides with its main module, and it is equal, unless the indices of some non logical constants and syntactic parameters, to an element P of $\text{Kr} W_\alpha$ having the same canonical component, then Q belongs to $\text{Kr} W_\alpha$ and must coincide with P.

iv) The elements of $\text{Kr} W_\alpha$ have the smallest height (see Section 2.4) among the main modules of the elements of $\text{Kr} D_\alpha$.

v) Let \ast be the application operation of the algebra $\text{Inf} - \mathcal{A}$; then if $P^\gamma \Rightarrow P^\delta \in \text{Kr} W_\gamma$, $P^\gamma \in \text{Kr} W_\gamma$, the tree $P^\gamma \ast P^\delta \in \text{Kr} W_\delta$. Therefore, taking into account the point i) too, $\text{Inf} - \mathcal{P} \equiv \langle g, \{\text{Kr} W_\alpha\}_{\alpha \in \text{types}}, \Rightarrow, \ast \rangle$ is really a sub-algebra of $\text{Inf} - \mathcal{A}$.

vi) For each pair (γ, δ) of types the function $\ast : \text{Kr} W_{\gamma \rightarrow \delta} \times \text{Kr} W_\gamma \rightarrow \text{Kr} W_\delta$ is injective.

Proof:

i) By definition, each tree in $\text{Kr} W_{\gamma \rightarrow \delta}$ is obtained as an abstraction $P^\gamma \Rightarrow P^\delta$ with $P^\gamma \in \text{Kr} W_\gamma$, $P^\delta \in \text{Kr} W_\delta$, and such a pair must be unique by the properties of the function \Rightarrow of $\text{Inf} - \mathcal{A}$ (Proposition 7.5).

ii) By induction on types:

the basis case is obvious by the definition of $\text{Kr} W_\gamma$ and $\text{Kr} W_\delta$: in these domains, the canonical component coincides with the main chain theorem, and different trees with the same theorem of the main critical chain are not possible. Induction step: suppose for a contradiction that in $\text{Kr} W_{\gamma \rightarrow \delta}$ two different trees H_1 and H_2 exist having the same canonical component $F_{\gamma \rightarrow \delta}$. Then, both H_1 and H_2 must be the abstraction of different pairs of trees, with the left abstracted one belonging to $\text{Kr} W_\gamma$ and the right abstracted one to $\text{Kr} W_\delta$. Moreover, both in H_1 and in H_2, by construction $F_{\gamma \rightarrow \delta} \equiv g(\gamma \delta)(B_\gamma, E_\delta)$ with B_γ the canonical component of the left abstracted tree and E_δ the canonical component of the right abstracted tree. But, by induction hypothesis, only one tree exists in $\text{Kr} W_\gamma$ having B_γ as canonical component, and only one tree exists in $\text{Kr} W_\delta$ having E_δ as canonical component; this forces $H_1 \equiv H_2$.

26
iii) By induction on types:

it can be noted that both Q and P belong to Kr_a and that Q can be obtained from P by suitable uniform replacements of non logical constants and syntactic parameters; moreover the canonical component is the same in both trees. Then, if $\alpha \in \{i, o, o \rightarrow o, i \rightarrow o, o \rightarrow i, i \rightarrow i\}$ the thesis is self-evident, by construction both of Kr_W and of Kr_D (see STEP 2.b of the proof of Main Lemma 7.2: note that in the hypotheses iii), the segments Π_1 and Π_2 of the trees there constructed become trivial). If $\alpha = \gamma \rightarrow \delta$, different from a basis case, Q is an abstraction tree $Q' \Rightarrow Q^*$ and the hypotheses of iii) must then hold for the abstracted trees too, by the definition of \Rightarrow. Then, by induction hypothesis, $Q' \in \text{Kr}_W$, $Q^* \in \text{Kr}_D$ and Q must belong to Kr_W.

iv) By induction on types: if $\alpha \in \{i, o, o \rightarrow o, i \rightarrow o, o \rightarrow i, i \rightarrow i\}$ the thesis is self-evident, since all trees are minimal in the respective domains. The induction step is quite natural by construction of the domains: if the abstracted trees have the minimal height in the respective domains, so it must be for the abstraction tree.

v) Let $F_{\gamma \rightarrow \delta}$ be the canonical component of $P^* \Rightarrow^* B_4$ be the canonical component of P^*; by Definition 7.7 of \ast, the canonical component of $P^* \ast P^*$ is $F_{\gamma \rightarrow \delta} B_4$. By definition of \ast and by construction of the subdomains Kr_W, Kr_D and Kr_V to which the contracted trees $P^* \Rightarrow^* P^*$ belong, the application $P^* \ast P^*$ may differ from the unique element H of Kr_W having $F_{\gamma \rightarrow \delta} B_4$ as canonical component, only for the indices of some non logical constants and syntactic parameters. Therefore, by iii) above, $P^* \Rightarrow^* P^*$ is in Kr_D and so it must coincide with H.

vi) The canonical component of an application tree P must be a term application of the form $F_{\gamma \rightarrow \delta} B_4$, and the contracted trees must have as canonical components respectively $F_{\gamma \rightarrow \delta}$ and B_4. Therefore, by point ii) above, at most one pair of contracted trees belonging to $\{\text{Kr}_W\}_{\alpha \in \text{types}}$ and producing P may exist.

Remark to point vi) above: Due to definition (7.7) of \ast, the thesis 8.2.vi) does not imply that P cannot be produced through application by any pair of trees which is not in $\{\text{Kr}_W\}_{\alpha \in \text{types}}$: indeed, having fixed the resulting application tree and the left contracted tree, many trees in Kr_D may be the right contracted tree.

Proposition 8.3. The trees of the sub-algebra $\text{Inf}-P$ are uniform proofs in the sense of Miller et al. [23].

Proof: By construction, from Definition 8.1 and Lemma 8.2.

On the contrary, in general, the trees of the whole $\text{Inf}-\mathcal{A}$ are not uniform proofs.

Definition 8.4. Given an inferential algebra $\text{Inf}-\mathcal{A}$ based on the ADS kind Kr, the corresponding interpretation of $\mathcal{L}_{K(a)}$ based on the ADS kind Kr is the function

$$K^V : \cup_{\alpha \in \text{types}} \{B_\alpha : B_\alpha \text{ closed formula of type } \alpha \} \rightarrow \text{Inf}-\mathcal{A}$$

such that $K^V(F_0)$ is the unique potential proof-tree of the sub-algebra $\text{Inf}-P$ having F_0 as the canonical component of the theorem of the main critical chain.

As an example, in the Appendix A1, the K^V-interpretation in a fixed $\text{Inf}-\mathcal{A}$ of the universal quantification $\forall_{(o \rightarrow o) \rightarrow o}$ is given.

Observe that infinitely many interpretations of the form K^V are possible, since by varying the canonical bijection g infinitely many different Kr-based inferential algebras $\text{Inf}-\mathcal{A}$ can be constructed. The difference is not merely technical, since e.g., with a fixed B_α different g's g_1 and g_2 may give rise to trees $K^V_1(B_\alpha)$ and $K^V_2(B_\alpha)$ having very different complexities resp. in the algebras $\text{Inf}-\mathcal{A}_1$ and $\text{Inf}-\mathcal{A}_2$.

Theorem 8.5. The interpretation K^V defined in Def. 8.4 is functionally sound (Def. 4.2).

Proof: $K^V(A_{\gamma \rightarrow \delta}) \ast K^V(B_{\gamma})$ is identical to $K^V(A_{\gamma \rightarrow \delta} B_{\gamma})$: indeed, by properties of $\text{Inf}-P$, the tree on the left side, resulting from the \ast-application, must belong to $\text{Inf}-P$ (closure property w.r.t. \ast) and, by definition of \ast, it must have $A_{\gamma \rightarrow \delta} B_{\gamma}$ as the canonical component; then, it must be the unique tree of $\text{Inf}-P$ having such property. For the same reason, $K^V(A_{\gamma}) \Rightarrow K^V(B_\delta)$ is identical to $K^V(g(A_{\gamma}, B_\delta))$.

Corollary 8.6. The thesis of Main Theorem 4.4 holds for the kind Kr.

Proof: It is straightforward to see that the inferential algebra $\text{Inf}-\mathcal{A}$ based on the ADS kind Kr of the critical chains, the sub-algebra $\text{Inf}-P$ of $\text{Inf}-\mathcal{A}$, and the interpretation K^V of closed formulas into $\text{Inf}-P$ defined above, satisfy the thesis of the Theorem.
9. LK_{\alpha}-Completeness with respect to inferential models

In this Section it is shown that if \text{Inf}_{\Lambda} \equiv \langle g, \{Kr_{\alpha}\}_{\alpha}^{\text{type}}, \Rightarrow, *, \cdot \rangle is the inferential algebra based on the ADS kind Kr of the critical chains, then infinitely many frames (Def. 5.2) in the class \left(\{\{Kr_{\alpha}\}, Kr(V), \Lambda, \Rightarrow\}\right) are sound functional denotations w.r.t LK_{\alpha} (Def. 5.3). The result is essentially based on Theorem 8.5 that establishes that KrV is functionally sound. As a consequence, the thesis of the Inferential Semantics Theorem 5.9 can be proven, that is LK_{\alpha} is sound and complete with respect to a sub-class of \left(\{\{Kr_{\alpha}\}, Kr(V), \Lambda, \Rightarrow\}\right).

The following technical notions must be mentioned:

Definition 9.1. Let \Lambda be a consistent extension of LK_{\alpha} such that the \Lambda-deduction apparatus has exactly the same logical axioms and logical rules as LK_{\alpha} and the \Lambda-language is an expansion of the LK_{\alpha}-language through at most a denumerable set of new primitive non logical constants for each type \gamma. Then we say that \Lambda is a definitive maximal extension of LK_{\alpha} if the following conditions hold:

i) \Lambda is maximal, i.e. for each \alpha-typed formula \Lambda \vdash \Lambda or \Lambda \vdash \neg \Lambda;

ii) for each \alpha-typed formula \Lambda of \Lambda having \alpha_{\alpha} as only free variable

\Lambda \vdash \forall x_{\alpha} \neg \neg[c_{\alpha}/\alpha_{\alpha}] \Lambda

where \alpha_{\alpha} is a suitable primitive non logical constant added to the language of LK_{\alpha}.

\text{Lemma 9.2. 1)} If \Lambda is a consistent maximal extension of LK_{\alpha} the following hold: i) if A, B are \alpha-typed formulas we have that \Lambda \vdash A \rightarrow B if and only if either \Lambda \vdash A or \Lambda \vdash \neg B; ii) if \Lambda \vdash \forall x_{\alpha} A is closed and \Lambda \vdash \forall x_{\alpha} A, then \Lambda \vdash [h_{\alpha}/\alpha_{\alpha}] \Lambda for each closed \alpha-typed formula \alpha_{\alpha} free variable corresponding to \lambda_{\alpha}.

2) For each consistent extension \Lambda of LK_{\alpha} having the same language, a definitive maximal extension \Lambda of \Lambda exists.

The non-straightforward part of 9.2 is the point 2); the proof is classical and has different presentations; see [3, 26, 5].

Theorem 9.3. Let \text{M}_{\Lambda} \equiv \left(\{Kr_{\alpha}\}, Kr(V), \Lambda, \Rightarrow\right) be an inferential frame based on the ADS kind Kr and the algebra Inf_{\Lambda}, where \Lambda is a definitive maximal extension of LK_{\alpha}. Then \text{M}_{\Lambda} is a sound functional denotation (Def. 5.3) for the logical constants and the equality symbols =_{\alpha} of the LK_{\alpha}-language.

Proof: It must be noted that, since \Lambda is a definitive maximal LK_{\alpha}-extension, for each \alpha-typed \Lambda either KrV(A) \equiv KrV(T) or KrV(A) \equiv KrV(\bot) holds. It is sufficient to show that i), iii), v), vi, vii) of Definition 5.3 are satisfied.

a) \{KrV(\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \ast KrV(B_{\alpha}) \ast KrV(C_{\alpha}) \equiv KrV(T)\} implies, by Th. 8.5, \{KrV(\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \ast KrV(B_{\alpha}) \ast KrV(C_{\alpha}) \equiv \Lambda \ast KrV(T)\} and then \{KrV(\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \ast KrV(B_{\alpha}) \ast KrV(C_{\alpha}) \equiv \Lambda \ast KrV(T)\} which, by definition of \equiv in an inferential frame, implies

\Lambda \vdash (\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}})B_{\alpha} =_{\alpha} T; thus, by properties of \Lambda, it follows \Lambda \vdash B_{\alpha} and \Lambda \vdash C_{\alpha}, which are equivalent to \Lambda \vdash B_{\alpha} =_{\alpha} T and to \Lambda \vdash C_{\alpha} =_{\alpha} T, and so, by definition of \equiv, both KrV(B_{\alpha}) \equiv KrV(T) and KrV(C_{\alpha}) \equiv KrV(T) hold. On the other side, KrV(B_{\alpha}) \equiv KrV(T) and KrV(C_{\alpha}) \equiv KrV(T), by properties of \Lambda, imply

\Lambda \vdash (\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}})B_{\alpha} =_{\alpha} T which gives, by definition of \equiv, \{KrV(\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}})B_{\alpha} \equiv KrV(T)\}, from which, through Th. 8.5, \{KrV(\exists_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}})B_{\alpha} \equiv KrV(T)\}.

b) KrV(\neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T) implies, by Th. 8.5, \{KrV(\neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T)\} which, by definition of \equiv gives \Lambda \vdash \neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}} =_{\alpha} T that, by properties of \Lambda, implies \Lambda \vdash A_{\alpha_{\alpha}} =_{\alpha} \bot which, by definition of \equiv, gives \{KrV(A_{\alpha_{\alpha}}) \equiv KrV(\bot)\}, on the other side, \{KrV(A_{\alpha_{\alpha}}) \equiv KrV(\bot)\} by definition of \equiv and by properties of \Lambda, gives \Lambda \vdash \neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}} =_{\alpha} T from which \{KrV(\neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T)\} that, by Th. 8.5, is \{KrV(\neg_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T)\}.

c) From KrV(\forall_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T), by Th. 8.5, we have that KrV(\forall_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}}) \equiv KrV(T) which, by definition of \equiv, gives \Lambda \vdash \forall_{\alpha_{\alpha} \rightarrow \alpha_{\alpha}} A_{\alpha_{\alpha}} B_{\alpha_{\alpha}}. Since \Lambda is a definitive maximal LK_{\alpha}-extension (Definition 9.1, Lemma 9.2), for each closed \alpha_{\alpha} of the \Lambda-language \Lambda \vdash [h_{\alpha}/\alpha_{\alpha}] B_{\alpha_{\alpha}} holds, \alpha_{\alpha} free variable corresponding to \alpha_{\alpha} and, since \Lambda must include the \lambda-rule, it proves [h_{\alpha}/\alpha_{\alpha}] B_{\alpha_{\alpha}} =_{\alpha} (\lambda_{\alpha_{\alpha}} B_{\alpha_{\alpha}})h_{\alpha}. Then KrV((\lambda_{\alpha_{\alpha}} B_{\alpha_{\alpha}})h_{\alpha}) \equiv KrV(T) holds for each closed \alpha_{\alpha} and so, by Th. 8.5, KrV(\lambda_{\alpha_{\alpha}} B_{\alpha_{\alpha}}) \equiv KrV(T) for each closed \alpha_{\alpha} is obtained. On the other

\text{Note that ii) is often called Henkin condition, see [26] p 45, [5] p 119. Moreover, the maximality condition i) can be written equivalently: for each \alpha-typed \Lambda of the \Lambda-language either \Lambda \vdash A =_{\alpha} T or \Lambda \vdash \neg A =_{\alpha} T.}
The inferential interpretation

\[* \langle (\lambda x_\alpha B_\alpha) \rangle = * \langle T \rangle \text{ for each closed formula } h_\alpha \text{ of the } \Lambda\text{-language, gives } * \langle (\lambda x_\alpha B_\alpha) h_\alpha \rangle = * \langle T \rangle \text{ and then, by definition of } \equiv \text{ and by the } \Lambda\text{-rule of } \Lambda, \text{ gives } \Lambda \vdash [h_\alpha/ a_\alpha]B_\alpha \text{ for each closed formula } h_\alpha. \]

It must hold \(\Lambda \vdash \forall (a_\alpha \rightarrow) \lambda x_\alpha B_\alpha \); otherwise, by Definition 9.1.i) it should be \(\Lambda \vdash \neg \forall (a_\alpha \rightarrow) \lambda x_\alpha B_\alpha \), that, by Lemma 9.2 ii) forces \(\Lambda \vdash [c_\alpha / a_\alpha]B_\alpha \) for some closed term \(c_\alpha \) of the \(\Lambda \) language, which is a contradiction. Therefore, \(* \langle (\lambda x_\alpha B_\alpha) \rangle = * \langle T \rangle \), that, by Th. 8.5, gives \(* \langle (\lambda x_\alpha B_\alpha) \rangle = * \langle T \rangle \).

Theorem 9.4. Let \(M_\alpha \equiv \left(\langle \{ K D_\alpha \}, K V \rangle, \Lambda, \equiv \right) \) be an inferential frame based on \(K r \) and Inf-\(\Lambda \), where \(\Lambda \) is a definitive maximal extension of \(L K_\beta \). Then \(M_\alpha \) is an inferential structure based on \(\{ K D_\alpha \} \).

Proof: Theorem 9.3. implies that \(M_\alpha \) is a sound denotation; it must be proven that the condition of Definition 5.6 holds. It can be noted that \(K V_\varphi (\lambda x_\alpha A_\beta) \) is \(K V(\lambda x_\alpha A_\beta) \) by definition of \(K V_\varphi \). Consider an arbitrary \(K V(\alpha) \in D_\alpha - \beta \) by definition of \(K V_\varphi \). Then by Theorem 8.5 \(K V(\lambda x_\alpha A_\beta) \) and, through the \(\lambda \)-rule of \(\Lambda \), \(K V(\lambda x_\alpha A_\beta) \) is a closed formula; then by Theorem 8.5 \(K V(\lambda x_\alpha A_\beta) \) is obtained, where \(b_\alpha \) is the free variable corresponding to \(x_\alpha \), that by definition of \(\Lambda \) is different from any free variable occurring in \(\lambda x_\alpha B_\alpha \). But, by construction, if \(v \) is defined as the \(b_\alpha \)-variant of \(g \) given by \(v(b_\alpha) = K V(\alpha) \), then \(K V_\varphi (A_\beta / b_\alpha) \) is \(K V(\alpha) \); thus, \(K V(\lambda x_\alpha A_\beta) \) holds, from which \(K V_\varphi (\alpha) \) follows.

Corollary 9.5. (Soundness) Let \(\Lambda \) be a consistent set of closed formulas in the language of \(L K_\alpha \); then \(L K_\alpha \vdash \Lambda \) implies that \(\Lambda \) is true in each inferential structure \(M_\alpha \equiv \left(\langle \{ K D_\alpha \}, K V \rangle, \Lambda, \equiv \right) \).

Proof: \(L K_\alpha \vdash \Lambda \) implies \(\Lambda \vdash A \) for each extension of \(L K_\alpha \), that is \(\Lambda \vdash A \equiv \top \), which is \(K V_\varphi (\Lambda) \equiv K V(\top) \).

Recall that the notion of truth is meaningful only if \(M_\alpha \) is an inferential structure and not simply an inferential frame. That is, the fundamental condition is that \(M_\alpha \) is a sound functional denotation; if this is missing, the hypothesis \(L K_\alpha \vdash \Lambda \) would not be sufficient for the truth of \(A \) in \(M_\alpha \).

Corollary 9.6. (Existence of an inferential model) Let \(G \) be a consistent set of \(o \)-typed closed formulas in the language of \(L K_\alpha \); then \(G \) has an inferential model.

Proof: By Lemma 9.2, \(\Delta = G \cup L K_\alpha \) admits a maximal definitive extension \(\Lambda \). By Theorem 9.4, if the ADS kind \(K r \) of the critical chains is chosen, \(M_\alpha \equiv \left(\langle \{ K D_\alpha \}, K V \rangle, \Lambda, \equiv \right) \) is an inferential structure, and, moreover \(\Lambda \vdash B \equiv \top \) holds for each \(B \) in \(G \). Then \(M_\alpha \) is an inferential model for \(G \).

Theorem 9.7. (Completeness of \(L K_\alpha \) w.r.t. the inferential semantics) If the sentence \(\Lambda \) is true in each inferential structure of the form \(\left(\langle \{ K D_\alpha \}, K V \rangle, \Lambda, \equiv \right) \), then it is \(L K_\alpha \)-provable.

Proof: By hypothesis \(K V_\varphi (\Lambda) \equiv K V(\top) \) for each \(\Lambda \)-definitive maximal extension of \(L K_\alpha \). Assume for a contradiction that \(L K_\alpha \not\vdash \Lambda \); then \(L K_\alpha \vdash \neg \Lambda \) is consistent and let \(\Sigma \) be a definitive maximal extension of it. It follows that \(A \) must be true in \(M_\Sigma \), that is \(K V_\varphi (A) \equiv \Sigma \) \(K V(\top) \), which is \(\Sigma \vdash A \equiv \top \) i.e. \(\Sigma \vdash \Lambda \), which is a contradiction, since by construction \(\Sigma \vdash \neg \Lambda \) and \(\Sigma \) is consistent.

The results presented in this Section give the proof of the Inferential Semantics Theorem 5.9.

10. Meaning and semantical complexity

The inferential interpretation \(K V(B_\alpha) \) in the domain \(K D_\alpha \) in an inferential structure
\[M_\alpha \equiv \left\{ \{K^d\alpha\}, K^r\alpha, \lambda, \Delta \right\} \] based on the ADS-kind \(Kr \) of the critical chains is a constructive semantical object which suitably expresses both the logical structure and the typed structure of \(B_\alpha \). Only after the construction of the interpretation tree \(K^r\alpha(B_\alpha) \), a notion of semantical identification between sentences in the structure is given, of the form \(K^r\alpha(A) \equiv K^r\alpha(B) \), that for the \(o \)-typed sentences provides a denotation by truth or falsehood, through the identifications \(K^r\alpha(A) \equiv K^r\alpha(T) \) or \(K^r\alpha(A) \equiv K^r\alpha(\bot) \). As it has been shown, by the Inferential Semantics Theorem 5.9, the interpretation \(K^r\alpha \) and such notion of truth have the soundness and completeness properties. But it is also clear that the truth denotation, notwithstanding these important properties, is poor with respect to the richness of information included in the interpretation-tree \(K^r\alpha(B_\alpha) \); moreover it does not supply well defined semantics features for formulas.

It is therefore interesting to introduce a notion of meaning of a closed formula \(B_\alpha \) in an arbitrary inferential frame
\[\left\langle \{\{K^d\alpha\}, V\}, \Delta, \Sigma \right\rangle \] it is a sequence of objects recursively extracted from the tree \(V(B_\alpha) \), that is starting from the semantic level. It will be essentially defined as the set of the Comp-Axiom instances corresponding to the Comp-rules which produces the Comp-ADS’s in the tree \(V(B_\alpha) \), and furthermore to those Comp-rules occurring in the interpretations \(V(F_\gamma)\)’s of the elements \(F_\gamma \)’s of the Comp-ADS’s occurring in \(V(B_\alpha) \), and so on. In the case of the inferential models based on the ADS kind \(Kr \) of the critical chains, due to the peculiar structure of the trees \(K^r\alpha(B_\alpha) \), the process ends and gives a finite sequence of Comp-Axiom instances that we can consider as constructing \(B_\alpha \) from the semantical point of view. That is, the Comp-Axiom produces the semantics of the interpreted higher order sentence, and a suitable finite sequence of Comp-Axioms, univocally determined by the interpretation \(K^r\alpha \), is the meaning of the sentence. Moreover, a notion of composition between meanings can be naturally defined, and it can be applied in the \(Kr \) based frames.

A question arises: why can’t the tree \(V(B_\alpha) \) itself be an acceptable notion of meaning of \(B_\alpha \)? The answer is that the interpretation \(V(B_\alpha) \) potentially includes the meaning (by its critical chains and its inferential types), but does not express it declaratively. The aim of the work developed in this section is to define a meaning function that maps terms to a sequence of declarative statements, that is to say, of properties of the term. Moreover, such definition of meaning is particularly manageable: it can be extended to the meaning of a rule in a proof \(Q \), of a critical chain in \(B_\alpha \) in the interpretations \(V(B_\alpha) \). It must be noted that, anyway, the proposed definition of meaning is one among many similar possible notions, and that many different abstraction procedures acting on \(V(B_\alpha) \) could be done, in addition to that here defined, if more specific theoretical or applicative purposes are considered. The following is both simple and expressive.

Definition 10.1. Let \(\left\langle \{\{K^d\alpha\}, V\}, \Delta, \Sigma \right\rangle \) be an arbitrary inferential semantics frame for \(LK_{\alpha} \). Let \(B_\alpha \) be a closed formula of the language. Then \(Meaning(B_\alpha) \) is a sequence of Comp-Axioms defined through the following meaning abstraction procedure:

I) Step 0: Let \(P(B_\alpha) \) be the tree in \(K^d\alpha \) assigned by \(V \) to \(B_\alpha \). Consider the set of the maximal Comp-ADS’s of kind \(K \) in \(P(B_\alpha) \), also including the uppermost \(K \)-ADS’s of Comp-measure 1 in \(P(B_\alpha) \), ordered in the following way: the tree branches are ordered from the leftmost to the rightmost, and in a same branch the upper ADS precedes the lower ADS; assign 1 to the uppermost ADS in the leftmost branch and proceed without counting any ADS twofold. Let \(T_1, ..., T_m \) be the obtained ADS sequence. For each \(T_j \) write the sub-sequence \(S_{\alpha} \) of the terms occurring as Comp-rule auxiliary terms, obtaining the sequences \(S_0, ..., S_n \); then, write the sequence \(S_0 \) given by the concatenation of the \(S_j \)’s.

II) Step \(n + 1 \): If \(S_0 \) is not empty, let \(F_{n_1}, ..., F_{n_n} \) be the formulas of \(S_0 \). For each \(F_{n_i} \) consider the syntactic parameters possibly occurring in them as closed terms, construct the inferential interpretation tree \(P(F_{n_i}) \), and work on it as at the step 0, obtaining a concatenation sequence \(S_{\alpha(n+1)} \); if each \(S_{\alpha(n+1)} \) is empty, stop; otherwise, write the sequence \(S_{\alpha(n+1)} \) given by the concatenation of the \(S_{\alpha(n+1)} \)’s, having deleted in each \(S_{\alpha(n+1)} \) the occurrences of \(F_{n_i} \).

III) \(Meaning(B_\alpha) \) is a sequence of Comp-Axioms such that each axiom has as auxiliary formula (see Section 3) the corresponding element of the sequence \(\Sigma \) obtained by the concatenation of the sequences \(S_0, ..., S_n \), and such that the principal variable has the same type as the auxiliary formula. In writing the mentioned Comp-Axioms instances, the syntactic parameters possibly occurring in the formulas of \(\Sigma \), are considered as free variables. \(Meaning(B_\alpha) \) is also called the explicit meaning of \(B_\alpha \). The reduced meaning of \(B_\alpha \), which we also write \(meaning(B_\alpha) \), is given by the sequence \(\Sigma \) whose element are the auxiliary formulas of the Comp Axioms occurring in \(Meaning(B_\alpha) \).

\[\diamond \]

In general, \(Meaning(B_\alpha) \) may be infinite. Indeed, if \(K \) is an arbitrary ADS-kind on which an arbitrary inferential frame is based, it may happen, in any Comp-ADS \(T \) occurring in a tree \(P \) of the inferential algebra domains, that an
element C_{γ} is such that $h(\gamma) > \text{inferential type(}T\text{)}$. This implies that some interpretation trees considered through the meaning abstraction procedure may have strictly increasing inferential type complexity, and then $\text{Comp-ADS}'s$ of strictly increasing complexity. Conversely, it will be proven that, if in $\{K_{D}d\} K \equiv Kr$ i.e. the algebra is based on the Comp-ADS Kr of the critical chain, the meaning is always finite.

Example 10.2. Here is given the computation of $\text{Meaning}(\forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha})$ starting from the interpretation $K^I\forall(\forall_{(\alpha\rightarrow\alpha)})$ which is the following tree (see also the Appendix A1):

$$
\begin{align*}
\Gamma & \vdash C_{\alpha} \quad \forall-R \\
\Gamma & \vdash C_{\alpha} \lor h_{\alpha} \quad \exists-R \\
\Delta & \vdash F_{\alpha\rightarrow\alpha}y_{\alpha} \quad \forall-R \\
\Gamma, \Delta & \vdash \exists x_{\alpha}(x_{\alpha} \lor h_{\alpha}) \land (F_{\alpha\rightarrow\alpha}y_{\alpha} \lor b_{\alpha}) \quad \land-R
\end{align*}
$$

(consider the root of the proof segment above as the left premise of the $\land-R$ rule below)

$$
\begin{align*}
\Omega & \vdash \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha} \\
\Omega & \vdash \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha} \lor d_{\alpha} \quad \lor-R
\end{align*}
$$

At the Step 0 of the meaning abstraction procedure, the sequence of the critical chains is:

$\Sigma_{1} \equiv (C_{\alpha}, x_{\alpha})$

$\Sigma_{2} \equiv ((C_{\alpha}, x_{\alpha}), (F_{\alpha\rightarrow\alpha}y_{\alpha}, h_{\alpha}))$

$\Sigma_{3} \equiv ((F_{\alpha\rightarrow\alpha}, q_{\alpha\rightarrow\alpha}), (\forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}, r_{\alpha}))$

the sequences $S_{01}, ..., S_{03}$ are:

$S_{01} \equiv \{C_{\alpha}\}$

$S_{02} \equiv \{C_{\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}\}$

$S_{03} \equiv \{F_{\alpha\rightarrow\alpha}, \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}\}$

The concatenation sequence S_{0} is: $\langle C_{\alpha}, C_{\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}, F_{\alpha\rightarrow\alpha}, \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}\rangle$

At the Step 1 of the meaning abstraction procedure, the interpretation trees of each element of S_{0} must be considered, and for each tree the sequence of the critical chains must be written. Such trees either are already presented in the Appendix, or are straightforwardly computable since are referred to α-typed formulas. So the sequences S_{1i} can be directly written:

$S_{1i} \equiv \{C_{\alpha}\}$

$S_{1i} \equiv \{C_{\alpha}\}$

$S_{1i} \equiv \{F_{\alpha\rightarrow\alpha}y_{\alpha}\}$

$S_{1i} \equiv \{C_{\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}\}$

$S_{1i} \equiv \{\forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}\}$

For each S_{1i}, the procedure prescribes to delete each occurrence of the formula which is interpreted by the tree corresponding to S_{1i}, and then the concatenation sequence S_{1} is: $\langle C_{\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}\rangle$.

At the Step 2 we have:

$S_{2i} \equiv \{C_{\alpha}\}$

$S_{2i} \equiv \{F_{\alpha\rightarrow\alpha}y_{\alpha}\}$

and then S_{2} is empty.

The final concatenation sequence Σ is $S_{0}S_{1}$, that is:

$\langle C_{\alpha}, C_{\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}, F_{\alpha\rightarrow\alpha}, \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}, F_{\alpha\rightarrow\alpha}, F_{\alpha\rightarrow\alpha}y_{\alpha}\rangle$. The explicit meaning $\text{Meaning}(\forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha})$ in the given inferential frame is:

$$
\exists x_{\alpha}(x_{\alpha} \leftrightarrow C_{\alpha}), \exists x_{\alpha}(x_{\alpha} \leftrightarrow C_{\alpha}), \forall y_{\alpha}\exists x_{\alpha}(x_{\alpha} \leftrightarrow F_{\alpha\rightarrow\alpha}y_{\alpha}), \exists x_{\alpha}(x_{\alpha} \rightarrow \forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}, \exists x_{\alpha}(x_{\alpha} \leftrightarrow C_{\alpha}), \forall y_{\alpha}\exists x_{\alpha}(x_{\alpha} \leftrightarrow F_{\alpha\rightarrow\alpha}y_{\alpha}))
$$

Note that, as to the definition of semantical complexity measures, the order of the axioms in the sequence is relevant, and that several occurrences of the same axioms contribute to the peculiarity of the meaning. We can so describe the declarative content of the meaning of $\forall_{(\alpha\rightarrow\alpha)}\theta_{\alpha\rightarrow\alpha}$ as expressed by the sequence Σ above: some formula
of type ω exists, and some functional F exists (the 4th element of the sequence) and this F is total (defined on all ω-typed formulas) and \forall is total on all such functionals. ◊

It must be noted that the meaning of B_α depends only on $\{\{K^{D_\alpha}\}, V\}$, i.e. on the inferential interpretation, and that it does not depend on the equivalence class of semantical values assigned by the structure to B_α. It is the comparison between meanings that will depend on the whole frame. Furthermore, the notion of meaning does not privilege the type ω, as happens for the notion of truth: each typed sentence has a meaning in an inferential semantics frame, that expresses its semantical complexity and that is recursively computable.

Definition 10.3. Let $\mathcal{M} \equiv \left(\{K^{D_\alpha}\}, V, \Delta, \equiv\right)$ be an arbitrary inferential semantics frame for $L_K^{\omega_0}$. Let B_α, C_β be closed formulas, and let $\text{meaning}(B_\alpha), \text{meaning}(C_\beta)$ be their reduced meanings (Def. 10.1). Then:

i) B_α, C_β have isomorphic meanings in \mathcal{M} if a bijection $\mu: \{\text{elements of meaning}(B_\alpha)\} \rightarrow \{\text{elements of meaning}(C_\beta)\}$ exists, such that: the meaning sequence order, is preserved i.e. $\mu(E_j) \equiv G_j$, with j the meaning index, and the type is preserved, i.e. $\text{type}(\mu(A)) \equiv \text{type}(A)$ for each E_j, G_j, A in the respective meaning sequences $\text{meaning}(B_\alpha), \text{meaning}(C_\beta)$.

ii) B_α, C_β have the same meaning in \mathcal{M} if they have isomorphic meanings in the frame by a meaning bijection $\mu: \{\text{elements of meaning}(B_\alpha)\} \rightarrow \{\text{elements of meaning}(C_\beta)\}$ and, moreover, $\forall B(\mu(A)) \Rightarrow V(B(A)) \equiv V(C_\beta)$ and $V(A) \equiv V(\mu(A))$ for each A occurring in $\text{meaning}(B_\alpha)$.

Therefore, if B_α, C_β have the same meaning in a given inferential structure, then they must have in it the same truth value, i.e. they belong to the same the semantical equivalence class established by \equiv; in general, the converse does not hold.

Proposition 10.4. Let $\mathcal{M} \equiv \left(\{K^{D_\alpha}\}, Kr, V, \Delta, \equiv\right)$ be an inferential semantics frame for $L_K^{\omega_0}$ based on the ADS kind Kr. Then for each ω_0-typed sentence B_α, Meaning(B_α) is $\{A\}$ where A is the universal closure of $\exists x_\alpha(x_\alpha \rightarrow B_\alpha)$, and for each i-typed formula C_i, Meaning(C_i) is $\{E\}$ where E is the universal closure of $\exists x_i(x_i \Rightarrow C_i)$.

Proof: It is straightforward from the definition of $\left(\{K^{D_\alpha}\}, Kr, V\right)$ and from the Definition 10.1 of meaning. ◊

Note that the meaning of an ω_0-typed sentence B is essentially an existential statement referred to B: in a sense, an ontological statement of the existence of B.

Definition 10.5. Let $\mathcal{M} \equiv \left(\{K^{D_\alpha}\}, V, \Delta, \equiv\right)$ be an arbitrary inferential semantics frame for $L_K^{\omega_0}$. Then, the composition \otimes between meanings in the frame is given as follows: Meaning$(B_{\alpha \rightarrow \beta}) \otimes$ Meaning(C_α) is the output of the meaning abstraction procedure (Definition 10.1) applied to the tree $V(B_{\alpha \rightarrow \beta}) \otimes V(C_\alpha)$. In the frame the meaning is compositional, i.e. the composition \otimes is well defined, if, for each pair $(B_{\alpha \rightarrow \beta}, C_\alpha)$:

\[
\text{Meaning}(B_{\alpha \rightarrow \beta}) \otimes \text{Meaning}(C_\alpha) \text{ coincides with Meaning}(B_{\alpha \rightarrow \beta}C_\alpha)
\]

and the three meaning sequences written above, either all are infinite or all are finite. ◊

The following surprising property of the inferential algebras of the form $Inf: \mathcal{A}$ is crucial for the compositionality of the meaning:

Lemma 10.6. Let P be a potential proof tree of a Kr-based inferential algebra $Inf: \mathcal{A} \equiv \{Kr^{D_\alpha}\}_{\alpha \in \text{types}, \Rightarrow, \ast}$; then the main Comp-ADS occurring in P, i.e. the main critical chain T of P, has a length ≤ 2.

Proof: the thesis follows from the construction of the domains Kr^{D_α}, presented in the proof of Lemma 7.2 in Section 7. ◊

Theorem 10.7. In the class of the inferential semantics structures $\mathcal{M} \equiv \left(\{K^{D_\alpha}\}, Kr, V, \Delta, \equiv\right)$ based on the ADS-kind Kr of the critical chains, the meaning of any closed formula B_α is finite and compositional.

Proof: a) the meaning is finite: by induction on the height of the type α in Meaning(B_α): if α is a primitive type the thesis follows from Proposition 10.4. Let α be the compound type $\alpha \rightarrow \beta$: the Comp-ADS’s that must be considered in the meaning abstraction procedure are the critical chains (Definition 6.14) of the tree $KrV(B_\alpha)$. $KrV(B_\alpha)$ is a monic
tree with a main critical chain of inferential type α, and a well known distribution of non-main critical chains with their inferential types. By Lemma 10.6 the main critical chain T of the tree is formed by two pairs of formulas, and so only the types of the T-axiom and of the T-theorem, that produce the inferential type of the tree, occur in T. Then, the types of the maximal auxiliary terms of the Comp-rules of the main chain must have an height strictly smaller than $h(\alpha)$, and so it is for all the remaining critical chains of the tree. Then, in the trees $KrV(F_\gamma)$’s produced from $KrV(B_{\alpha})$ by the further meaning abstraction procedure steps, the inferential type heights of the critical chains strictly decrease, that is $h(\gamma) < h(\alpha)$ for each F_γ. When inferential type heights ≤ 1 are reached, they correspond to primitive types, and the procedure necessarily stops.

b) The meaning is compositional. Having proved that the meanings are always finite, the thesis is a consequence of Theorem 8.5. Indeed, it must hold:

$$KrV((B_{\alpha-\beta})) \ast KrV((C_\alpha)) \equiv KrV((B_{\alpha-\beta}C_\alpha))$$

then, by definition of the meaning composition \ast and of meaning:

$$\text{Meaning}(B_{\alpha-\beta}) \land \text{Meaning}(C_\alpha) \equiv \text{Meaning}(B_{\alpha-\beta}C_\alpha)$$

where the composition is well defined, since the meaning sequences are finite. \Diamond

Example 10.8. Let $B_{i\to o}$ and C_i be closed formulas, and let $\left\{\left(\left\{\left\{KrV_{\alpha}, \text{Meaning}\right\}_{\alpha}, \Delta, \approx\right\}\right)\right\}$ be an inferential semantics frame. $\text{Meaning}(C_i)$ is $\langle \exists x_i (C_i = x_i) \rangle$ (Prop. 10.4). Let us compute $\text{Meaning}(B_{i\to o})$. The tree $KrV(B_{i\to o})$ is the abstraction tree $KrV(N_i) \Rightarrow KrV(E_o)$ with $(N_i, E_o) \equiv g_{(i\to o)}(B_{i\to o})$, g canonical bijection of the alphabet, N_i, E_o closed formulas. The following are the trees $KrV(N_i)$ and $KrV(E_o)$ (Def. 8.1, Def. 8.4):

$$\frac{F_{i\to o} N_i \vdash F_{i\to o} N_i ;\ R}{F_{i\to o} N_i \vdash \exists x F_{i\to o} x_i ;\ R} \quad \frac{\Delta \vdash E_o ;\ R}{\Delta \vdash \exists o (\exists \xi o \wedge \exists \eta o \rightarrow E_o) ;\ R}$$

where $F_{i\to o}$ is the $i \to o$-typed non logical constant indexed by the Gödel-number $\#N_i$, and Δ is the o-typed syntactic parameter indexed by $\#E_o$. Thus, the tree $KrV(B_{i\to o})$ is the following (see proof of Main Lemma 7.2, STEP1, point b)):

$$\frac{F_{i\to o} N_i \vdash F_{i\to o} N_i ;\ R}{F_{i\to o} N_i \vdash \exists x F_{i\to o} x_i ;\ R} \quad \frac{\Delta \vdash B_{i\to o} \wedge \exists o (\exists \xi o \rightarrow B_{i\to o}) ;\ R}{\Delta \vdash B_{i\to o} \wedge \exists o (\exists \xi o \rightarrow B_{i\to o}) ;\ R}$$

where: w_i is the $i\to o$-typed syntactic parameter indexed by $\#(KrV(N_i), KrV(E_o))$; d_o is the o-typed non logical constant indexed by $\#KrV(E_o)$. Let us apply the meaning extraction procedure to $KrV(B_{i\to o})$. At step 0 the sequence of critical chains is: $T_1 \equiv \langle (\langle N_i, x_i \rangle) \rangle$; $T_2 \equiv \langle (\langle N_i, x_i \rangle, (B_{i\to o} w_i, u_o)) \rangle$ which is the main critical chain of the tree; then, we have $S_{10} \equiv \langle N_i \rangle$, $S_{12} \equiv \langle N_i, B_{i\to o} w_i \rangle$. The concatenation sequence S_i is $\langle N_i, N_i, B_{i\to o} w_i \rangle$. At step 1 we consider the trees $KrV(N_i)$ and $KrV(B_{i\to o} w_i)$ which are elementarily computable (see also Example 10.2) and give: $S_{11} \equiv \langle N_i \rangle$, $S_{12} \equiv \langle B_{i\to o} w_i \rangle$ so that S_1 is empty. Thus, the final sequence Σ is $\langle B_{i\to o} w_i \rangle$ and

$$\text{Meaning}(B_{i\to o}) \equiv \langle \exists x_i (N_i = x_i), \exists x_i (N_i = x_i), \forall w_i \exists u_o (u_o \leftrightarrow B_{i\to o} w_i) \rangle.$$
In the frames in which the meaning is compositional we can define the notion of *meaning spectrum*, that expresses the semantical complexity of a formula through the meanings of its subformulas. This allows a more refined semantical analysis of o-typed formulas: the spectra comparison between sentences may be more interesting than the simple meaning comparison.

Definition 10.9. Let $\langle \{K,D\alpha\}, V, \Delta, \sim = \rangle$ be an arbitrary inferential semantics frame for $L_{K\omega}$ where the meaning is compositional. Let B_{α} be any arbitrary closed formula and let W be the construction tree of B_{α}, having as nodes the subformulas of B_{α} (see [18] Ch. 9, p. 141). Consider the nodes of W as ordered in the following way: the tree branches are ordered from the leftmost to the rightmost, and in a same branch the upper node precedes the lower node; assign 1 to the uppermost node in the leftmost branch and proceed without counting any node twice. Write the resulting sequence U of the B_{α}-subformulas. Then the *Meaning − spectrum* of B_{α} is the concatenation of the sequences in U.

Through the *Meaning − spectrum*, in the frames with a compositional meaning, the semantical analysis of any constant C_{o} of the language may be very different from that of a compound sentence.

Definition 10.10. Let $\langle \{K,D\alpha\}, V, \Delta, \sim = \rangle$ be an arbitrary inferential semantics frame for $L_{K\omega}$ and B_{α} a closed formula. Let η any syntactic complexity measure on $L_{K\omega}$-formulas; then a *semantical complexity measure* of B_{α} in the given frame is $\eta(\text{Meaning}(B_{\alpha}))$.

A semantical complexity measure is therefore recursively computable from the objects $V(B_{\alpha})$ and $\text{Meaning}(B_{\alpha})$. It is in general independent of the syntactic complexity of B_{α}.

11. Conclusions and work in progress

Inferential semantics for classical type theory is the basis for a research program which is in progress, whose main aims are presented here. The program includes the developments of the new formal definition of meaning, the introduction of a logical interpretation of typed λ-calculus, and a general and systematic extension of inferential semantics to constructive logics.

11.1. Meaning and semantical complexity of proofs

A notion of meaning of a proof can be investigated. As a possible starting point, we may consider the following definition:

Definition 11.1. Let $\langle \{K,D\alpha\}, V, \Delta, \sim = \rangle$ be an arbitrary inferential semantics frame for $L_{K\omega}$ and let Q be a proof in $L_{K\omega}$. Then:

i) If R_{α} is a Comp-rule in P then $\text{Meaning}(R_{\alpha})$ is the concatenation between the sequences $\text{Meaning}(t)$, where t is the R_{α}- maximal auxiliary term, and $\text{Meaning}(B)$ where B is the R_{α}-auxiliary proposition. We say that $\text{Meaning}(R_{\alpha})$ is the *meaning of* R_{α} *in the given frame*.

ii) If G is a maximal Comp-ADS in P, then $\text{Meaning}(G)$ is the concatenation, following the order of the ADS, of the meanings of the Comp-rules whose maximal auxiliary terms occur in G. We say that $\text{Meaning}(G)$ is the *meaning of* G *in the given frame*.\(^{12}\)

iii) $\text{Meaning}(P)$ is the concatenation, following the ADS order defined in Definition 10.1 point I), of the meanings of the maximal Comp-ADS's of P. We say that $\text{Meaning}(Q)$ is the *meaning of the proof* P *in the given frame*.

Thus, it will be possible to have proofs with isomorphic or identical meanings in a given frame, and to define semantical complexity measures on proofs, by extending Definition 10.10.

\(^{12}\)Observe that also the meanings of the auxiliary propositions of the rules, that reflect the context P, are included.
11.2. A strong inferential semantics for typed λ-calculus

The inferential semantics of \mathbf{LK}_ω presented in this work also is a semantics for typed λ-calculus. However, it is possible to explore a stronger definition of the inferential interpretation that gives rise to a new kind of model of the typed lambda-calculus, based on proofs. The key point is to introduce inferential algebras having a very expressive bijection g and to strengthen the notion of semantical identification in an inferential structure. In particular, we are investigating inferential structures $\langle (\{\mathbf{Kr}_\alpha\}), \mathbf{Kr}_\alpha, g, \Lambda, \cong \rangle$ such that, having already in each inferential frame $(V(B_\alpha) \Rightarrow V(C_\beta)) + V(B_\alpha) \equiv V(g(B_\alpha,C_\beta)B_\alpha)$, it also holds $\Lambda \vdash g(B_\alpha,C_\beta)B_\alpha \equiv \beta C_\beta$. The bijection g should be defined in a way such that $g(B_\alpha,C_\beta)$ is $\lambda x_\alpha C_\beta$, with x_α bound variable having as index the G"odel-number of the pair (B_α,C_β). This way, the operation \Rightarrow of the inferential algebra simulates the λ-abstraction, so that it results as expressed through abstract deduction structures based on the comprehension rules.

11.3. Inferential Semantics for intuitionistic and constructive logics

We would like to produce an extension of the inferential semantics approach to the higher order intuitionistic type theory \mathbf{LJ}_ω and its subsystems (e.g. the fragments given by uniform proofs and λ-prolog), in a way that fully expresses the constructive character of inferential models. The main goal of the program is the following: to give a uniform method which extracts the inferential semantics of a class $\{U_i\}$ of constructive subsystems of \mathbf{LK}_ω (among which \mathbf{LJ}_ω) by parametrizing a same schema of model on the system $\{U_i\}$ varying in the collection $\{U_i\}$. The idea is to employ the higher order counterpart of the \mathbf{LJ}-reduction trees $\{T_k\}$ à la Takeuti, introduced for the costruction of a Kripke-style model for the first order intuitionistic logic \mathbf{LJ} in [27], pp 57-58. We suppose to associate to each higher order system U the corresponding collection $\{T^U_k\}$ of higher order Takeuti-like reduction trees, and to construct a Kripke-style inferential model (also recalling [24]) having at nodes suitable inferential frames $\mathcal{F} \equiv \langle (\{\mathbf{Kr}_\alpha\}), \mathbf{Kr}_\alpha, g, \Lambda, \cong \rangle$ depending on the reduction tree $T^{U,q}$ linked to the node q.

12. Acknowledgements

The authors would like to thank Pino Rosolini for his support, suggestions and advices, Eugenio Moggi and Giorgio Delzanno for useful discussions and the anonymous reviewers for providing us suggestions that helped us to improve the presentation of the paper.

References

Let B_o be any o-typed closed formula in which the subformula A_o occurs. Here it is shown how the quantification $\forall x_o B_o$ is represented by the inferential interpretation $Kr\forall$ into the inferential algebra $Inf\bar{A}$. The explicit writing is $\bigvee_{(o\rightarrow o)\rightarrow o} \lambda x_o B_o$, that is an application between the terms $\bigvee_{(o\rightarrow o)\rightarrow o} \lambda x_o [x_o/A_o] B_o$.

The interpretation $Kr\forall (\bigvee_{(o\rightarrow o)\rightarrow o})$ is the potential proof-tree $P(\bigvee_{(o\rightarrow o)\rightarrow o})$ associated to $\bigvee_{(o\rightarrow o)\rightarrow o}$ in the sub-domain $Kr\forall W_{(o\rightarrow o)\rightarrow o}$ of $Inf\bar{A}$, included in the domain $Kr\forall D_{(o\rightarrow o)\rightarrow o}$ of $Inf\bar{A}$; $P(\bigvee_{(o\rightarrow o)\rightarrow o})$ is obtained through iterated abstraction operations \Rightarrow starting from the basis sub-domain $Kr\forall W_o$ contained in $Kr\forall D_o$. In order to construct such abstractions it is necessary to use the canonical recursive bijection g (Definition 3.9) associated to the algebra, that is:
$g_{(o,a)}^{-1}(\forall (o,a) \rightarrow o) \equiv (F_{o \rightarrow o}, G_o)$

$g_{(o,a)}^{-1}(C_o) \equiv (C_o, E_o)$

$F_{o \rightarrow o}, G_o, C_o, E_o$ unambiguously and recursively determined closed formulas, given $\forall (o,a) \rightarrow o$.

Therefore, by the definition of the inferential algebra $Inf \cdot \mathcal{A}$ and of the sub-algebra $Inf \cdot \mathcal{P}$ it holds:

$P(\forall (o,a) \rightarrow o) \equiv P(F_{o \rightarrow o}) \Rightarrow P(G_o) \equiv (P(C_o) \Rightarrow P(E_o)) \Rightarrow P(G_o)$

where $P(C_o), P(E_o), P(G_o)$ are the potential proof-trees in the inferential domain $^{Kr}_{\mathcal{W}}$, contained in $^{Kr}_{\mathcal{D}}$:

\[
\Gamma \vdash C_o \quad \Delta \vdash E_o \quad \Omega \vdash G_o
\]

where:

h_o non logical constant having as index the Gödel-number $#P(C_o)$;

b_o logical constant having as index the Gödel-number $#P(E_o)$;

x_o, u_o bound variables, i.e. the syntactic parameter having as index the Gödel-number $#(P(C_o), P(E_o))$;

$\nu, \omega, \theta_o, \delta_o$ bound variables;

the main critical chain is $T \equiv ((C_o, x_o), (F_{o \rightarrow o} y_o, u_o))$ having inferential type $o \rightarrow o$; it also is the main weak critical chain of the tree.

The tree $P(\forall (o,a) \rightarrow o) \equiv P(F_{o \rightarrow o}) \Rightarrow P(G_o)$ is the following (see proof of Lemma 7.2, STEP1, point b):

\[
\Gamma, \Delta, \Omega \vdash \forall (o,a) \rightarrow o \quad \theta_{o \rightarrow o} \quad \delta_{o \rightarrow o} \\
\Omega \vdash \forall (o,a) \rightarrow o \theta_{o \rightarrow o} \delta_{o \rightarrow o} \quad d_o
\]

Note that the left abstracted tree $P(F_{o \rightarrow o})$ occurs as a leftmost segment of the abstraction tree.

As to the new constants and syntactic parameters note that:

d_o is a non logical constant having as index $#P(G_o)$;

$\theta_{o \rightarrow o}$ is the memory parameter, i.e. the syntactic parameter having as index $#(P(F_{o \rightarrow o}), P(G_o))$;

$r_o, q_{o \rightarrow o}$ are bound variables.

The main critical chain is $T \equiv ((F_{o \rightarrow o}, q_{o \rightarrow o}), \forall (o,a) \rightarrow o, \theta_{o \rightarrow o}, r_o)$ bound variables.

The interpreted formula $\forall (o,a) \rightarrow o$ is the least component of the T-theorem.

Now the interpretation $^{Kr}_{\mathcal{V}}(\lambda x_o B_o)$ is computed. It is the potential proof-tree $P(\lambda x_o B_o)$ associated to $\lambda x_o B_o$ in the sub-domain $^{Kr}_{\mathcal{W}}$ of $Inf \cdot \mathcal{P}$, included in the domain $^{Kr}_{\mathcal{D}}$ of $Inf \cdot \mathcal{A}$.

$P(\lambda x_o B_o)$ is obtained through abstraction operations starting from the basis sub-domain $^{Kr}_{\mathcal{W}}$. In order to construct such abstractions, it is necessary to use the canonical recursive bijection g (Def. 3.9) associated to the algebra, that is:

$g_{(o,a)}^{-1}(\lambda x_o B_o) \equiv (R_o, S_o)$
R_α, S_α univocally and recursively determinated closed formulas, given $\lambda x_\alpha B_\alpha$.

By the definition of $\text{Inf-}\mathcal{A}$ and $\text{Inf-}\mathcal{P}$ it holds:

$$P(\lambda x_\alpha B_\alpha) \equiv P(R_\alpha) \Rightarrow P(S_\alpha)$$

where $P(R_\alpha), P(S_\alpha)$ are the following potential proof-trees in the inferential domain K^rW_α contained in K^rD_α:

$$\Gamma \vdash R_\alpha \quad \Delta \vdash S_\alpha$$

w_α, z_α bound variables; Γ, Δ suitably indexed syntactic parameters of the potential proof-trees.

The tree $P(\lambda x_\alpha B_\alpha) \equiv P(R_\alpha) \Rightarrow P(S_\alpha)$ in K^rW_α of $\text{Inf-}\mathcal{P}$, which is:

$$\Gamma \vdash R_\alpha \quad \Delta \vdash S_\alpha \quad \exists w_\alpha(w_\alpha) \quad \exists z_\alpha(z_\alpha)$$

and memory parameters; then, their abstraction is obtained from $P(\lambda x_\alpha B_\alpha)$ by uniformly replacing each $\lambda x_\alpha B_\alpha$ by $\lambda x_\alpha B_\alpha$ in K^rW_α of $\text{Inf-}\mathcal{P}$, which is:

$$\Lambda \vdash \forall (\alpha \rightarrow o) \rightarrow \lambda x_\alpha B_\alpha \quad \Lambda \vdash \exists s_\alpha(s_\alpha)$$

A suitably indexed syntactic parameter. Therefore, in the inferential algebra the following holds:

$$K^rV(\forall (\alpha \rightarrow o) \rightarrow \lambda x_\alpha B_\alpha) \equiv K^rV(\forall x_\alpha B_\alpha)$$

A2

Lemma 7.8 Let P^δ be the main module of any arbitrary $R^\delta \in K^rD_\delta$; then either P^δ is in K^rD_δ too, or a suitable replacement of memory parameters, memory constants and syntactic metavariables is always possible in P^δ, so that the resulting tree H is in $R^\delta \in K^rD_\delta$.

Proof: By induction on types:

a) Primitive types: the main module (see proof of Main Lemma, 7.2 STEP1a)) of each element of K^rD_δ (resp. K^rD_β) is in K^rD_δ (resp. K^rD_β) by the definition of the domain;

b) Basis case for the compound types: let $\delta \in \{ o \rightarrow o, o \rightarrow o, o \rightarrow i \}$ and $R^\delta \equiv M^\alpha \Rightarrow M^\beta, \alpha, \beta \in \{o,i\}$; if N^α, N^β are the main modules of M^α, M^β, they by point a) above are in K^rD_α, K^rD_β and so $N^\alpha \Rightarrow N^\beta$ belongs to $K^rD_{\alpha \rightarrow \beta}$; moreover, by construction, it differs from the main module P of $M^\alpha \Rightarrow M^\beta$ only in the indexes of memory constants and memory parameters. Then it can be obtained from P by suitable replacements of memory constants and memory parameters, that are always possible.

c) Induction step: let $R^\delta \equiv M^\alpha \Rightarrow M^\beta$, by induction hypothesis, from the main modules N^α, N^β of M^α, M^β two trees H_1 and H_2 belonging resp. to K^rD_α and K^rD_β can be obtained, by suitable replacements of memory constants and memory parameters; then, their abstraction R belongs to $K^rD_{\alpha \rightarrow \beta}$. By construction, it is possible to obtain the tree R from the main module of $M^\alpha \Rightarrow M^\beta$ by suitable replacements of memory constants and memory parameters, and this is the thesis.

A3

Lemma 7.9 Let R^δ be any element of K^rD_δ that coincides with its main module, having an occurrence of the closed formula G_δ as the canonical component; then, for each closed δ-typed formula F_δ different from G_δ a tree H^δ in K^rD_δ exists, having F_δ as the canonical component, so that H^δ is obtained from R^δ by uniformly replacing each term ancestor of the canonical component G_δ by F_δ, and by suitable replacement of non logical constants and memory parameters.

Proof: by induction on types:
a) Primitive types: the thesis is straightforward, by definition of primitive domains, but needs the following attention: if $K_{\delta}D_i$ is $K_{\delta}D_i$, when the main chain theorem G_i is replaced with F_i, the index of the non logical constants $F_{i,\alpha}$ of the introducing axioms $F_{i,\alpha}G_i \vdash F_{i,\alpha}G_i$ (see Def. 7.1.ii)) must be changed, in order to obtain a resulting tree that really belongs to $K_{\delta}D_i$; moreover, if $K_{\delta}D_i$ is $K_{\delta}D_o$, if G_o is replaced with F_o in the introducing axioms $\Gamma \vdash G_o$, the index of the syntactic parameter Γ must be changed.

b) Basis case for the compound types: let $\delta \equiv \alpha \rightarrow \beta \in \{o \rightarrow o, i \rightarrow o, o \rightarrow i, i \rightarrow i\}$, let $R_{\delta} \equiv M^\alpha \Rightarrow M^\beta$ and let $G_{\delta} \equiv g_{\alpha,\beta}(B_{\alpha},E_{\beta}), g_{\alpha,\beta}$ canonical recursive bijection (Def. 3.9); then B_{α},E_{β} must be the canonical components, which in the primitive cases coincide with the main chain theorems, of M^α, M^β. Moreover, if R_{δ} coincides with its main module, so it must be for M^α, M^β. If $g_{\alpha,\beta}^{-1}(F_{\delta})$ is the pair (Z_{α},C_{β}), it is possible to obtain from M^α, M^β, by induction hypothesis, through suitable replacements of non logical constants and memory parameters, the trees N^α, N^β in $K_{\delta}D_{\alpha}, K_{\delta}D_{\beta}$, that have as canonical components resp. Z_{α} and C_{β}. Then $N^\alpha \Rightarrow N^\beta$ belongs to $K_{\delta}D_{\alpha \beta}$ and, by construction, it can be obtained by a suitable replacement of non logical constants and memory parameters, and by replacing G_{δ} with F_{δ}, from $R_{\delta} \equiv M^\alpha \Rightarrow M^\beta$.

c) Induction step: let $R^\beta \equiv M^\alpha \Rightarrow M^\beta$, α, β arbitrary types; the proof is similar to point b).